Minimax Estimation of Quantum States Based on the Latent Information Priors
We develop priors for Bayes estimation of quantum states that provide minimax state estimation. The relative entropy from the true density operator to a predictive density operator is adopted as a loss function. The proposed prior maximizes the conditional Holevo mutual information, and it is a quan...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2017-11-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/19/11/618 |
Summary: | We develop priors for Bayes estimation of quantum states that provide minimax state estimation. The relative entropy from the true density operator to a predictive density operator is adopted as a loss function. The proposed prior maximizes the conditional Holevo mutual information, and it is a quantum version of the latent information prior in classical statistics. For one qubit system, we provide a class of measurements that is optimal from the viewpoint of minimax state estimation. |
---|---|
ISSN: | 1099-4300 |