An upper bound for the amplitude of limit cycles of Liénard-type differential systems

In this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion conce...

Full description

Bibliographic Details
Main Authors: Fangfang Jiang, Zhi Ji, Yan Wang
Format: Article
Language:English
Published: University of Szeged 2017-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5416
id doaj-8d2cb2f1826d4f0da3aed3e16045a15a
record_format Article
spelling doaj-8d2cb2f1826d4f0da3aed3e16045a15a2021-07-14T07:21:29ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752017-05-0120173411410.14232/ejqtde.2017.1.345416An upper bound for the amplitude of limit cycles of Liénard-type differential systemsFangfang Jiang0Zhi Ji1Yan Wang2Jiangnan University, Wuxi, ChinaJiangnan University, Wuxi, ChinaJiangnan University, Wuxi, ChinaIn this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion concerning an explicit upper bound for the amplitude of the unique limit cycle of the Liénard-type system on the plane. Here the amplitude of a limit cycle on $\{(x,y)\in\mathbb{R}^2: x<0\}$ (resp. $\{(x,y)\in\mathbb{R}^2: x>0\}$) is defined as the minimum (resp. maximum) value of the $x$-coordinate on such a limit cycle. Finally, we give two examples including an application to predator-prey system model to illustrate the obtained theoretical result, and Matlab simulations are presented to show the agreement between our theoretical result with the simulation analysis.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5416liénard-type systemlimit cycleamplitudeupper bound
collection DOAJ
language English
format Article
sources DOAJ
author Fangfang Jiang
Zhi Ji
Yan Wang
spellingShingle Fangfang Jiang
Zhi Ji
Yan Wang
An upper bound for the amplitude of limit cycles of Liénard-type differential systems
Electronic Journal of Qualitative Theory of Differential Equations
liénard-type system
limit cycle
amplitude
upper bound
author_facet Fangfang Jiang
Zhi Ji
Yan Wang
author_sort Fangfang Jiang
title An upper bound for the amplitude of limit cycles of Liénard-type differential systems
title_short An upper bound for the amplitude of limit cycles of Liénard-type differential systems
title_full An upper bound for the amplitude of limit cycles of Liénard-type differential systems
title_fullStr An upper bound for the amplitude of limit cycles of Liénard-type differential systems
title_full_unstemmed An upper bound for the amplitude of limit cycles of Liénard-type differential systems
title_sort upper bound for the amplitude of limit cycles of liénard-type differential systems
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2017-05-01
description In this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion concerning an explicit upper bound for the amplitude of the unique limit cycle of the Liénard-type system on the plane. Here the amplitude of a limit cycle on $\{(x,y)\in\mathbb{R}^2: x<0\}$ (resp. $\{(x,y)\in\mathbb{R}^2: x>0\}$) is defined as the minimum (resp. maximum) value of the $x$-coordinate on such a limit cycle. Finally, we give two examples including an application to predator-prey system model to illustrate the obtained theoretical result, and Matlab simulations are presented to show the agreement between our theoretical result with the simulation analysis.
topic liénard-type system
limit cycle
amplitude
upper bound
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=5416
work_keys_str_mv AT fangfangjiang anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
AT zhiji anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
AT yanwang anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
AT fangfangjiang upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
AT zhiji upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
AT yanwang upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems
_version_ 1721303491146678272