An upper bound for the amplitude of limit cycles of Liénard-type differential systems
In this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion conce...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2017-05-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5416 |
id |
doaj-8d2cb2f1826d4f0da3aed3e16045a15a |
---|---|
record_format |
Article |
spelling |
doaj-8d2cb2f1826d4f0da3aed3e16045a15a2021-07-14T07:21:29ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752017-05-0120173411410.14232/ejqtde.2017.1.345416An upper bound for the amplitude of limit cycles of Liénard-type differential systemsFangfang Jiang0Zhi Ji1Yan Wang2Jiangnan University, Wuxi, ChinaJiangnan University, Wuxi, ChinaJiangnan University, Wuxi, ChinaIn this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion concerning an explicit upper bound for the amplitude of the unique limit cycle of the Liénard-type system on the plane. Here the amplitude of a limit cycle on $\{(x,y)\in\mathbb{R}^2: x<0\}$ (resp. $\{(x,y)\in\mathbb{R}^2: x>0\}$) is defined as the minimum (resp. maximum) value of the $x$-coordinate on such a limit cycle. Finally, we give two examples including an application to predator-prey system model to illustrate the obtained theoretical result, and Matlab simulations are presented to show the agreement between our theoretical result with the simulation analysis.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5416liénard-type systemlimit cycleamplitudeupper bound |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fangfang Jiang Zhi Ji Yan Wang |
spellingShingle |
Fangfang Jiang Zhi Ji Yan Wang An upper bound for the amplitude of limit cycles of Liénard-type differential systems Electronic Journal of Qualitative Theory of Differential Equations liénard-type system limit cycle amplitude upper bound |
author_facet |
Fangfang Jiang Zhi Ji Yan Wang |
author_sort |
Fangfang Jiang |
title |
An upper bound for the amplitude of limit cycles of Liénard-type differential systems |
title_short |
An upper bound for the amplitude of limit cycles of Liénard-type differential systems |
title_full |
An upper bound for the amplitude of limit cycles of Liénard-type differential systems |
title_fullStr |
An upper bound for the amplitude of limit cycles of Liénard-type differential systems |
title_full_unstemmed |
An upper bound for the amplitude of limit cycles of Liénard-type differential systems |
title_sort |
upper bound for the amplitude of limit cycles of liénard-type differential systems |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2017-05-01 |
description |
In this paper, we investigate the position problem of limit cycles for a class of Liénard-type differential systems. By considering the upper bound of the amplitude of limit cycles on $\{(x,y)\in\mathbb{R}^2: x<0\}$ and $\{(x,y)\in\mathbb{R}^2: x>0\}$ respectively, we provide a criterion concerning an explicit upper bound for the amplitude of the unique limit cycle of the Liénard-type system on the plane. Here the amplitude of a limit cycle on $\{(x,y)\in\mathbb{R}^2: x<0\}$ (resp. $\{(x,y)\in\mathbb{R}^2: x>0\}$) is defined as the minimum (resp. maximum) value of the $x$-coordinate on such a limit cycle. Finally, we give two examples including an application to predator-prey system model to illustrate the obtained theoretical result, and Matlab simulations are presented to show the agreement between our theoretical result with the simulation analysis. |
topic |
liénard-type system limit cycle amplitude upper bound |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=5416 |
work_keys_str_mv |
AT fangfangjiang anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems AT zhiji anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems AT yanwang anupperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems AT fangfangjiang upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems AT zhiji upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems AT yanwang upperboundfortheamplitudeoflimitcyclesoflienardtypedifferentialsystems |
_version_ |
1721303491146678272 |