Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector

We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure me...

Full description

Bibliographic Details
Main Authors: Hugh W. Davies, Melanie Gorman-Ng
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-08-01
Series:Frontiers in Public Health
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/full
id doaj-8d0744492d8d4baf949901c4708003d6
record_format Article
spelling doaj-8d0744492d8d4baf949901c4708003d62020-11-25T03:10:01ZengFrontiers Media S.A.Frontiers in Public Health2296-25652020-08-01810.3389/fpubh.2020.00371551278Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction SectorHugh W. Davies0Melanie Gorman-Ng1Melanie Gorman-Ng2School of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaSchool of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaBritish Columbia Construction Safety Alliance, New Westminster, BC, CanadaWe describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool.https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/fullrisk assessmentexposuresilicaconstructioninternet
collection DOAJ
language English
format Article
sources DOAJ
author Hugh W. Davies
Melanie Gorman-Ng
Melanie Gorman-Ng
spellingShingle Hugh W. Davies
Melanie Gorman-Ng
Melanie Gorman-Ng
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
Frontiers in Public Health
risk assessment
exposure
silica
construction
internet
author_facet Hugh W. Davies
Melanie Gorman-Ng
Melanie Gorman-Ng
author_sort Hugh W. Davies
title Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_short Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_full Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_fullStr Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_full_unstemmed Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
title_sort development of a web-based tool for risk assessment and exposure control planning of silica-producing tasks in the construction sector
publisher Frontiers Media S.A.
series Frontiers in Public Health
issn 2296-2565
publishDate 2020-08-01
description We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool.
topic risk assessment
exposure
silica
construction
internet
url https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/full
work_keys_str_mv AT hughwdavies developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector
AT melaniegormanng developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector
AT melaniegormanng developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector
_version_ 1724661215929565184