Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector
We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure me...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-08-01
|
Series: | Frontiers in Public Health |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/full |
id |
doaj-8d0744492d8d4baf949901c4708003d6 |
---|---|
record_format |
Article |
spelling |
doaj-8d0744492d8d4baf949901c4708003d62020-11-25T03:10:01ZengFrontiers Media S.A.Frontiers in Public Health2296-25652020-08-01810.3389/fpubh.2020.00371551278Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction SectorHugh W. Davies0Melanie Gorman-Ng1Melanie Gorman-Ng2School of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaSchool of Population and Public Health, University of British Columbia, Vancouver, BC, CanadaBritish Columbia Construction Safety Alliance, New Westminster, BC, CanadaWe describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool.https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/fullrisk assessmentexposuresilicaconstructioninternet |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hugh W. Davies Melanie Gorman-Ng Melanie Gorman-Ng |
spellingShingle |
Hugh W. Davies Melanie Gorman-Ng Melanie Gorman-Ng Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector Frontiers in Public Health risk assessment exposure silica construction internet |
author_facet |
Hugh W. Davies Melanie Gorman-Ng Melanie Gorman-Ng |
author_sort |
Hugh W. Davies |
title |
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector |
title_short |
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector |
title_full |
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector |
title_fullStr |
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector |
title_full_unstemmed |
Development of a Web-Based Tool for Risk Assessment and Exposure Control Planning of Silica-Producing Tasks in the Construction Sector |
title_sort |
development of a web-based tool for risk assessment and exposure control planning of silica-producing tasks in the construction sector |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Public Health |
issn |
2296-2565 |
publishDate |
2020-08-01 |
description |
We describe the development and implementation of a novel, on-line risk assessment tool for respirable crystalline silica (RCS) exposure for use in the construction sector. It was motivated by the introduction of new OHS regulation in British Columbia that allowed for the substitution of exposure measurement data with “objective air monitoring data” collected at “equivalent work operations.” This allowance encouraged the introduction of quantitative risk assessment in a notoriously challenging work environment but it was concluded that without assistance, the typical construction employer would struggle to identify, extract, and interpret validate objective data. The tool described here was based on a continually-updatable RCS exposure database, and a predictive regression model based on the database to generate exposure risk estimates. The model was embedded in an adaptive web-based application that can be run on common platforms. The design followed standard web conventions and features so that no specialized training is required for its use. It was designed to be usable by end-users with varying expertise, including non-OHS experts. Users describe the RCS-dust generating task they will perform, and associated control measures. The tool estimates both uncontrolled and controlled task-based exposure concentrations. Using additional information entered by the user, the on-line tool generates an “exposure control plan” or ECP, a legally regulated document for those undertaking work potentially exposing workers to RCS particulate. The development of the tool was a community-based, tri-partite effort of the local OHS regulator, construction employers, and exposure scientists. In addition to being a practical risk assessment tool, the designers wanted it to function as an educational tool, and that it should explore novel methods for exposure data collection and use. The strengths of this approach include the publicly shared updateable database that encourages continuous improvement and illustrates best practices; and the timely and cost effective collection and sharing of exposure data in a value-added manner. It is however limited to a single task per ECP, and only considers exposure to task operators, and not adjacent workers. Currently in BC, users generate up to 3,900 ECP's per year with the tool. |
topic |
risk assessment exposure silica construction internet |
url |
https://www.frontiersin.org/article/10.3389/fpubh.2020.00371/full |
work_keys_str_mv |
AT hughwdavies developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector AT melaniegormanng developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector AT melaniegormanng developmentofawebbasedtoolforriskassessmentandexposurecontrolplanningofsilicaproducingtasksintheconstructionsector |
_version_ |
1724661215929565184 |