Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis

In the paper, a reduction algorithm for transforming the generaleigenvalue problem to the standard one is presented for both classicalfull-matrix methods and a sparse-matrix technique appropriate forlarge-scale circuits. An optimal pivoting strategy for the two methodsis proposed to increase the pre...

Full description

Bibliographic Details
Main Authors: J. Michal, J. Dobes
Format: Article
Language:English
Published: Spolecnost pro radioelektronicke inzenyrstvi 2003-09-01
Series:Radioengineering
Online Access:http://www.radioeng.cz/fulltexts/2003/03_03_01_05.pdf
id doaj-8cf7549966204b39b44937ce91e8afec
record_format Article
spelling doaj-8cf7549966204b39b44937ce91e8afec2020-11-24T22:51:55ZengSpolecnost pro radioelektronicke inzenyrstviRadioengineering1210-25122003-09-0112315Using the Variable-Length Arithmetic for an Accurate Poles-Zeros AnalysisJ. MichalJ. DobesIn the paper, a reduction algorithm for transforming the generaleigenvalue problem to the standard one is presented for both classicalfull-matrix methods and a sparse-matrix technique appropriate forlarge-scale circuits. An optimal pivoting strategy for the two methodsis proposed to increase the precision of the computations. The accuracyof the algorithms is furthermore increased using longer numerical data.First, a ORQJ.GRXEOH precision sparse algorithm is compared with theGRXEOH precision sparse and full-matrix ones. Finally, the applicationof a suitable multiple-precision arithmetic library is evaluated.www.radioeng.cz/fulltexts/2003/03_03_01_05.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Michal
J. Dobes
spellingShingle J. Michal
J. Dobes
Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
Radioengineering
author_facet J. Michal
J. Dobes
author_sort J. Michal
title Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
title_short Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
title_full Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
title_fullStr Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
title_full_unstemmed Using the Variable-Length Arithmetic for an Accurate Poles-Zeros Analysis
title_sort using the variable-length arithmetic for an accurate poles-zeros analysis
publisher Spolecnost pro radioelektronicke inzenyrstvi
series Radioengineering
issn 1210-2512
publishDate 2003-09-01
description In the paper, a reduction algorithm for transforming the generaleigenvalue problem to the standard one is presented for both classicalfull-matrix methods and a sparse-matrix technique appropriate forlarge-scale circuits. An optimal pivoting strategy for the two methodsis proposed to increase the precision of the computations. The accuracyof the algorithms is furthermore increased using longer numerical data.First, a ORQJ.GRXEOH precision sparse algorithm is compared with theGRXEOH precision sparse and full-matrix ones. Finally, the applicationof a suitable multiple-precision arithmetic library is evaluated.
url http://www.radioeng.cz/fulltexts/2003/03_03_01_05.pdf
work_keys_str_mv AT jmichal usingthevariablelengtharithmeticforanaccuratepoleszerosanalysis
AT jdobes usingthevariablelengtharithmeticforanaccuratepoleszerosanalysis
_version_ 1725668134180880384