Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly
Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals per...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-11-01
|
Series: | Frontiers in Systems Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fnsys.2017.00085/full |
id |
doaj-8cd74c1526b64db683af9a9b77d88cfb |
---|---|
record_format |
Article |
spelling |
doaj-8cd74c1526b64db683af9a9b77d88cfb2020-11-24T22:22:52ZengFrontiers Media S.A.Frontiers in Systems Neuroscience1662-51372017-11-011110.3389/fnsys.2017.00085291974Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy ElderlyRuud H. Knols0Jaap Swanenburg1Jaap Swanenburg2Dino De Bon3Dino De Bon4Federico Gennaro5Martin Wolf6Bernard Krüger7Dominique Bettex8Eling D. de Bruin9Directorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, SwitzerlandDirectorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, SwitzerlandDepartment of Chiropractic Medicine, Faculty of Medicine, Balgrist University Hospital, University of Zürich, Zurich, SwitzerlandDirectorate of Research and Education, Physiotherapy & Occupational Therapy Research Center, University Hospital Zurich, Zurich, SwitzerlandDepartment of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, SwitzerlandDepartment of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, SwitzerlandBiomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, Zurich, SwitzerlandInstitute of Anesthesiology, University Hospital Zurich, Zurich, SwitzerlandInstitute of Anesthesiology, University Hospital Zurich, Zurich, SwitzerlandDepartment of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, SwitzerlandElderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) (n = 5) and EEG power (n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001) lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000), but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the feasibility of the COPHYCON in a clinical setting.http://journal.frontiersin.org/article/10.3389/fnsys.2017.00085/fullbrain plasticitycomputerized cognitive trainingcortexelderlyexergamesmotor control |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ruud H. Knols Jaap Swanenburg Jaap Swanenburg Dino De Bon Dino De Bon Federico Gennaro Martin Wolf Bernard Krüger Dominique Bettex Eling D. de Bruin |
spellingShingle |
Ruud H. Knols Jaap Swanenburg Jaap Swanenburg Dino De Bon Dino De Bon Federico Gennaro Martin Wolf Bernard Krüger Dominique Bettex Eling D. de Bruin Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly Frontiers in Systems Neuroscience brain plasticity computerized cognitive training cortex elderly exergames motor control |
author_facet |
Ruud H. Knols Jaap Swanenburg Jaap Swanenburg Dino De Bon Dino De Bon Federico Gennaro Martin Wolf Bernard Krüger Dominique Bettex Eling D. de Bruin |
author_sort |
Ruud H. Knols |
title |
Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly |
title_short |
Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly |
title_full |
Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly |
title_fullStr |
Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly |
title_full_unstemmed |
Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly |
title_sort |
investigating the usability and acute effects of a bedside video console to prefrontal cortical activity alterations: a preclinical study in healthy elderly |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Systems Neuroscience |
issn |
1662-5137 |
publishDate |
2017-11-01 |
description |
Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) (n = 5) and EEG power (n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001) lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000), but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the feasibility of the COPHYCON in a clinical setting. |
topic |
brain plasticity computerized cognitive training cortex elderly exergames motor control |
url |
http://journal.frontiersin.org/article/10.3389/fnsys.2017.00085/full |
work_keys_str_mv |
AT ruudhknols investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT jaapswanenburg investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT jaapswanenburg investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT dinodebon investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT dinodebon investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT federicogennaro investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT martinwolf investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT bernardkruger investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT dominiquebettex investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly AT elingddebruin investigatingtheusabilityandacuteeffectsofabedsidevideoconsoletoprefrontalcorticalactivityalterationsapreclinicalstudyinhealthyelderly |
_version_ |
1725766851826286592 |