New roughage source of cv. Mahasarakham utilization for ruminants feeding under global climate change
Objective As the climate changes, it influences ruminant’s feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham; SG) as a new source of good quality forage to improve fee...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Asian-Australasian Association of Animal Production Societies
2018-12-01
|
Series: | Asian-Australasian Journal of Animal Sciences |
Subjects: | |
Online Access: | http://www.ajas.info/upload/pdf/ajas-18-0210.pdf |
Summary: | Objective As the climate changes, it influences ruminant’s feed intake, nutrient digestibility, rumen methane production and emission. This experiment aimed to evaluate the effect of feeding Sweet grass (Pennisetum purpureum cv. Mahasarakham; SG) as a new source of good quality forage to improve feed utilization efficiency and to mitigate rumen methane production and emission. Methods Four, growing crossbred of Holstein Friesian heifers, 14 months old, were arranged in a 4×4 Latin square design to receive four dietary treatments. Treatment 1 (T1) was rice straw (RS) fed on ad libitum with 1.0% body weight (BW) of concentrate (C) supplementation (RS/1.0C). Treatment 2 (T2) and treatment 3 (T3) were SG, fed on ad libitum with 1.0% and 0.5% BW of concentrate supplementation, respectively (SG/1.0C and SG/0.5C, respectively). Treatment 4 (T4) was total Sweet grass fed on ad libitum basis with non-concentrate supplementation (TSG). Results The results revealed that roughage and total feed intake were increased with SG when compared to RS (p<0.01) while TSG was like RS/1.0C treatment. Digestibility of nutrients, nutrients intake, total volatile fatty acids (VFAs), rumen microorganisms were the highest and CH4 was the lowest in the heifers that received SG/1.0C (p<0.01). Total dry matter (DM) feed intake, digestibility and intake of nutrients, total VFAs, NH3-N, bacterial and fungal population of animals receiving SG/0.5C were higher than those fed on RS/1.0C. Reducing of concentrate supplementation with SG as a roughage source increased NH3-N, acetic acid, and fungal populations, but it decreased propionic acid and protozoal populations (p<0.05). However, ruminal pH and blood urea nitrogen were not affected by the dietary treatments (p>0.05). Conclusion As the results, SG could be a good forage to improve rumen fermentation, decrease methane production and reduced the level of concentrate supplementation for growing ruminants in the tropics especially under global climate change. |
---|---|
ISSN: | 1011-2367 1976-5517 |