Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Mat...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/11/16/7359 |
id |
doaj-8cb718e8eddf4ebc99a91abb0fb53662 |
---|---|
record_format |
Article |
spelling |
doaj-8cb718e8eddf4ebc99a91abb0fb536622021-08-26T13:29:41ZengMDPI AGApplied Sciences2076-34172021-08-01117359735910.3390/app11167359Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum IsotopesMohamad Amin Bin Hamid0Hoe Guan Beh1Yusuff Afeez Oluwatobi2Xiao Yan Chew3Saba Ayub4Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Physics Education, Pusan National University, Busan 46241, KoreaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaIn this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14</mn><mo> </mo><mi>MeV</mi></mrow></semantics></math></inline-formula>. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of <sup>92</sup>Mo isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and RMSE <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>0.33557</mn></mrow></semantics></math></inline-formula>. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR.https://www.mdpi.com/2076-3417/11/16/7359(n,2n) nuclear reactionmachine learningsupervised learning |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohamad Amin Bin Hamid Hoe Guan Beh Yusuff Afeez Oluwatobi Xiao Yan Chew Saba Ayub |
spellingShingle |
Mohamad Amin Bin Hamid Hoe Guan Beh Yusuff Afeez Oluwatobi Xiao Yan Chew Saba Ayub Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes Applied Sciences (n,2n) nuclear reaction machine learning supervised learning |
author_facet |
Mohamad Amin Bin Hamid Hoe Guan Beh Yusuff Afeez Oluwatobi Xiao Yan Chew Saba Ayub |
author_sort |
Mohamad Amin Bin Hamid |
title |
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes |
title_short |
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes |
title_full |
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes |
title_fullStr |
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes |
title_full_unstemmed |
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes |
title_sort |
neutron-induced nuclear cross-sections study for plasma facing materials via machine learning: molybdenum isotopes |
publisher |
MDPI AG |
series |
Applied Sciences |
issn |
2076-3417 |
publishDate |
2021-08-01 |
description |
In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14</mn><mo> </mo><mi>MeV</mi></mrow></semantics></math></inline-formula>. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of <sup>92</sup>Mo isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and RMSE <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>0.33557</mn></mrow></semantics></math></inline-formula>. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR. |
topic |
(n,2n) nuclear reaction machine learning supervised learning |
url |
https://www.mdpi.com/2076-3417/11/16/7359 |
work_keys_str_mv |
AT mohamadaminbinhamid neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes AT hoeguanbeh neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes AT yusuffafeezoluwatobi neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes AT xiaoyanchew neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes AT sabaayub neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes |
_version_ |
1721195042962407424 |