Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes

In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Mat...

Full description

Bibliographic Details
Main Authors: Mohamad Amin Bin Hamid, Hoe Guan Beh, Yusuff Afeez Oluwatobi, Xiao Yan Chew, Saba Ayub
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/16/7359
id doaj-8cb718e8eddf4ebc99a91abb0fb53662
record_format Article
spelling doaj-8cb718e8eddf4ebc99a91abb0fb536622021-08-26T13:29:41ZengMDPI AGApplied Sciences2076-34172021-08-01117359735910.3390/app11167359Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum IsotopesMohamad Amin Bin Hamid0Hoe Guan Beh1Yusuff Afeez Oluwatobi2Xiao Yan Chew3Saba Ayub4Department of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaDepartment of Physics Education, Pusan National University, Busan 46241, KoreaDepartment of Fundamental & Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, MalaysiaIn this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14</mn><mo> </mo><mi>MeV</mi></mrow></semantics></math></inline-formula>. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of <sup>92</sup>Mo isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and RMSE <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>0.33557</mn></mrow></semantics></math></inline-formula>. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR.https://www.mdpi.com/2076-3417/11/16/7359(n,2n) nuclear reactionmachine learningsupervised learning
collection DOAJ
language English
format Article
sources DOAJ
author Mohamad Amin Bin Hamid
Hoe Guan Beh
Yusuff Afeez Oluwatobi
Xiao Yan Chew
Saba Ayub
spellingShingle Mohamad Amin Bin Hamid
Hoe Guan Beh
Yusuff Afeez Oluwatobi
Xiao Yan Chew
Saba Ayub
Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
Applied Sciences
(n,2n) nuclear reaction
machine learning
supervised learning
author_facet Mohamad Amin Bin Hamid
Hoe Guan Beh
Yusuff Afeez Oluwatobi
Xiao Yan Chew
Saba Ayub
author_sort Mohamad Amin Bin Hamid
title Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
title_short Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
title_full Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
title_fullStr Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
title_full_unstemmed Neutron-Induced Nuclear Cross-Sections Study for Plasma Facing Materials via Machine Learning: Molybdenum Isotopes
title_sort neutron-induced nuclear cross-sections study for plasma facing materials via machine learning: molybdenum isotopes
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2021-08-01
description In this work, we apply a machine learning algorithm to the regression analysis of the nuclear cross-section of neutron-induced nuclear reactions of molybdenum isotopes, <sup>92</sup>Mo at incident neutron energy around <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>14</mn><mo> </mo><mi>MeV</mi></mrow></semantics></math></inline-formula>. The machine learning algorithms used in this work are the Random Forest (RF), Gaussian Process Regression (GPR), and Support Vector Machine (SVM). The performance of each algorithm is determined and compared by evaluating the root mean square error (RMSE) and the correlation coefficient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>). We demonstrate that machine learning can produce a better regression curve of the nuclear cross-section for the neutron-induced nuclear reaction of <sup>92</sup>Mo isotopes compared to the simulation results using EMPIRE 3.2 and TALYS 1.9 from the previous literature. From our study, GPR is found to be better compared to RF and SVM algorithms, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and RMSE <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mn>0.33557</mn></mrow></semantics></math></inline-formula>. We also employed the crude estimation of property (CEP) as inputs, which consist of simulation nuclear cross-section from TALYS 1.9 and EMPIRE 3.2 nuclear code alongside the experimental data obtained from EXFOR (1 April 2021). Although the Experimental only (EXP) dataset generates a more accurate cross-section, the use of CEP-only data is found to generate an accurate enough regression curve which indicates a potential use in training machine learning models for the nuclear reaction that is unavailable in EXFOR.
topic (n,2n) nuclear reaction
machine learning
supervised learning
url https://www.mdpi.com/2076-3417/11/16/7359
work_keys_str_mv AT mohamadaminbinhamid neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes
AT hoeguanbeh neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes
AT yusuffafeezoluwatobi neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes
AT xiaoyanchew neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes
AT sabaayub neutroninducednuclearcrosssectionsstudyforplasmafacingmaterialsviamachinelearningmolybdenumisotopes
_version_ 1721195042962407424