Summary: | BackgroundCommon risk factors such as obesity, poor nutrition, physical inactivity, stress, and sleep deprivation threaten the wellness and work ability of employees. Personal health technologies may help improve engagement in health promotion programs and maintenance of their effect.
ObjectiveThis study investigated personal health technologies in supporting employee health promotion targeting multiple behavioral health risks. We studied the relations of usage activity to demographic and physiological characteristics, health-related outcomes (weight, aerobic fitness, blood pressure and cholesterol), and the perceived usefulness of technologies in wellness management.
MethodsWe conducted a subgroup analysis of the technology group (114 subjects, 33 males, average age 45 years, average BMI 27.1 kg/m2) of a 3-arm randomized controlled trial (N=352). The trial was organized to study the efficacy of a face-to-face group intervention supported by technologies, including Web services, mobile applications, and personal monitoring devices. Technology usage was investigated based on log files and questionnaires. The associations between sustained usage of Web and mobile technologies and demographic and physiological characteristics were analyzed by comparing the baseline data of sustained and non-sustained users. The associations between sustained usage and changes in health-related outcomes were studied by repeated analysis of variance, using data measured by baseline and end questionnaires, and anthropometric and laboratory measurements. The experienced usability, usefulness, motivation, and barriers to using technologies were investigated by 4 questionnaires and 2 interviews.
Results111 subjects (97.4%) used technologies at some point of the study, and 33 (29.9%) were classified as sustained users of Web or mobile technologies. Simple technologies, weight scales and pedometer, attracted the most users. The sustained users were slightly older 47 years (95% CI 44 to 49) versus 44 years (95% CI 42 to 45), P=.034 and had poorer aerobic fitness at baseline (mean difference in maximal metabolic equivalent 1.0, 95% Cl 0.39 to 1.39; P=.013) than non-sustained users. They succeeded better in weight management: their weight decreased -1.2 kg (95% CI -2.38 to -0.01) versus +0.6 kg (95% CI -0.095 to 1.27), P=.006; body fat percentage -0.9%-units (95% CI -1.64 to -0.09) versus +0.3%-units (95% CI -0.28 to 0.73), P=.014; and waist circumference -1.4 cm (95% CI -2.60 to -0.20) versus +0.7 cm (95% CI -0.21 to 1.66), P=.01. They also participated in intervention meetings more actively: median 4 meetings (interquartile range; IQR 4–5) versus 4 meetings (IQR 3–4), P=.009. The key factors in usefulness were: simplicity, integration into daily life, and clear feedback on progress.
ConclusionsDespite active initial usage, less than 30% of subjects continued using Web or mobile technologies throughout the study. Sustained users achieved better weight-related outcomes than non-sustained users. High non-usage attrition and modest outcomes cast doubt on the potential of technologies to support interventions.
|