Ising Nematic Quantum Critical Point in a Metal: A Monte Carlo Study

The Ising nematic quantum critical point associated with the zero-temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We carry out a minus-sign-free quantum Monte Carlo study of this quantum critical point for a two-dimensional lattice model wit...

Full description

Bibliographic Details
Main Authors: Yoni Schattner, Samuel Lederer, Steven A. Kivelson, Erez Berg
Format: Article
Language:English
Published: American Physical Society 2016-08-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.6.031028
Description
Summary:The Ising nematic quantum critical point associated with the zero-temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We carry out a minus-sign-free quantum Monte Carlo study of this quantum critical point for a two-dimensional lattice model with sizes up to 24×24 sites. For the parameters in this study, some (but not all) correlation functions exhibit scaling behavior over the accessible ranges of temperature, (imaginary) time, and distance, and the system remains nonsuperconducting down to the lowest accessible temperatures. The observed scaling behavior has remarkable similarities to recently measured properties of the Fe-based superconductors proximate to their putative nematic quantum critical point.
ISSN:2160-3308