Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations

Both the chemical shift and quadrupole coupling tensors for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N and <inline-formula&g...

Full description

Bibliographic Details
Main Authors: Otto E. O. Zeman, Igor L. Moudrakovski, Carsten Hartmann, Sylvio Indris, Thomas Bräuniger
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Molecules
Subjects:
aln
Online Access:https://www.mdpi.com/1420-3049/25/3/469
id doaj-8ca46d3ce77146fa8c7422b0beb619e1
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Otto E. O. Zeman
Igor L. Moudrakovski
Carsten Hartmann
Sylvio Indris
Thomas Bräuniger
spellingShingle Otto E. O. Zeman
Igor L. Moudrakovski
Carsten Hartmann
Sylvio Indris
Thomas Bräuniger
Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
Molecules
aln
single-crystal nmr
<sup>14</sup>n nmr
<sup>27</sup>al nmr
chemical shift tensor
quadrupole coupling tensor
author_facet Otto E. O. Zeman
Igor L. Moudrakovski
Carsten Hartmann
Sylvio Indris
Thomas Bräuniger
author_sort Otto E. O. Zeman
title Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
title_short Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
title_full Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
title_fullStr Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
title_full_unstemmed Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT Calculations
title_sort local electronic structure in aln studied by single-crystal <sup>27</sup>al and <sup>14</sup>n nmr and dft calculations
publisher MDPI AG
series Molecules
issn 1420-3049
publishDate 2020-01-01
description Both the chemical shift and quadrupole coupling tensors for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N and <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>) and <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>), the quadrupolar coupling constants were determined to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#967;</mi> <mrow> <msup> <mo>(</mo> <mn>14</mn> </msup> <mi mathvariant="normal">N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>8.19</mn> <mo>&#177;</mo> <mn>0.02</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> kHz, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#967;</mi> <mrow> <msup> <mo>(</mo> <mn>27</mn> </msup> <mi>Al</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.914</mn> <mo>&#177;</mo> <mn>0.001</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> MHz. The chemical shift parameters obtained from the data fit were <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>292.6</mn> <mo>&#177;</mo> <mn>0.6</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mo>&#916;</mo> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>1.9</mn> <mo>&#177;</mo> <mn>1.1</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N, and (after correcting for the second-order quadrupolar shift) <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>113.6</mn> <mo>&#177;</mo> <mn>0.3</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mo>&#916;</mo> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>12.7</mn> <mo>&#177;</mo> <mn>0.6</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mover> <mi>&#967;</mi> <mo>&#175;</mo> </mover> <mi>calc</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.791</mn> <mo>&#177;</mo> <mn>0.003</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> MHz, but not for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mover> <mi>&#967;</mi> <mo>&#175;</mo> </mover> <mi>calc</mi> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>19.5</mn> <mo>&#177;</mo> <mn>3.3</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> kHz.
topic aln
single-crystal nmr
<sup>14</sup>n nmr
<sup>27</sup>al nmr
chemical shift tensor
quadrupole coupling tensor
url https://www.mdpi.com/1420-3049/25/3/469
work_keys_str_mv AT ottoeozeman localelectronicstructureinalnstudiedbysinglecrystalsup27supalandsup14supnnmranddftcalculations
AT igorlmoudrakovski localelectronicstructureinalnstudiedbysinglecrystalsup27supalandsup14supnnmranddftcalculations
AT carstenhartmann localelectronicstructureinalnstudiedbysinglecrystalsup27supalandsup14supnnmranddftcalculations
AT sylvioindris localelectronicstructureinalnstudiedbysinglecrystalsup27supalandsup14supnnmranddftcalculations
AT thomasbrauniger localelectronicstructureinalnstudiedbysinglecrystalsup27supalandsup14supnnmranddftcalculations
_version_ 1725164206926331904
spelling doaj-8ca46d3ce77146fa8c7422b0beb619e12020-11-25T01:12:57ZengMDPI AGMolecules1420-30492020-01-0125346910.3390/molecules25030469molecules25030469Local Electronic Structure in AlN Studied by Single-Crystal <sup>27</sup>Al and <sup>14</sup>N NMR and DFT CalculationsOtto E. O. Zeman0Igor L. Moudrakovski1Carsten Hartmann2Sylvio Indris3Thomas Bräuniger4Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, GermanyMax-Planck-Institut for Solid-State Research, Heisenbergstrasse 1, 70569 Stuttgart, GermanyLeibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Str. 2, 12489 Berlin, GermanyKarlsruhe Institute of Technology, Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, GermanyDepartment of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, GermanyBoth the chemical shift and quadrupole coupling tensors for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N and <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>) and <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>), the quadrupolar coupling constants were determined to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#967;</mi> <mrow> <msup> <mo>(</mo> <mn>14</mn> </msup> <mi mathvariant="normal">N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>8.19</mn> <mo>&#177;</mo> <mn>0.02</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> kHz, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#967;</mi> <mrow> <msup> <mo>(</mo> <mn>27</mn> </msup> <mi>Al</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.914</mn> <mo>&#177;</mo> <mn>0.001</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> MHz. The chemical shift parameters obtained from the data fit were <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>292.6</mn> <mo>&#177;</mo> <mn>0.6</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mo>&#916;</mo> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>1.9</mn> <mo>&#177;</mo> <mn>1.1</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N, and (after correcting for the second-order quadrupolar shift) <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>113.6</mn> <mo>&#177;</mo> <mn>0.3</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#948;</mi> <mo>&#916;</mo> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>12.7</mn> <mo>&#177;</mo> <mn>0.6</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> ppm for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>27</mn> </msup> </semantics> </math> </inline-formula>Al with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mover> <mi>&#967;</mi> <mo>&#175;</mo> </mover> <mi>calc</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>1.791</mn> <mo>&#177;</mo> <mn>0.003</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> MHz, but not for <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>14</mn> </msup> </semantics> </math> </inline-formula>N with <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mover> <mi>&#967;</mi> <mo>&#175;</mo> </mover> <mi>calc</mi> </msub> <mo>=</mo> <mo>&#8722;</mo> <mrow> <mo>(</mo> <mn>19.5</mn> <mo>&#177;</mo> <mn>3.3</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> kHz.https://www.mdpi.com/1420-3049/25/3/469alnsingle-crystal nmr<sup>14</sup>n nmr<sup>27</sup>al nmrchemical shift tensorquadrupole coupling tensor