Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations

<p>The rapid adjustment, or semi-direct effect, of marine stratocumulus clouds to elevated layers of absorbing aerosols may enhance or dampen the radiative effect of aerosol–radiation interactions. Here we use large-eddy simulations to investigate the sensitivity of stratocumulus clouds to the...

Full description

Bibliographic Details
Main Authors: R. J. Herbert, N. Bellouin, E. J. Highwood, A. A. Hill
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/1317/2020/acp-20-1317-2020.pdf
Description
Summary:<p>The rapid adjustment, or semi-direct effect, of marine stratocumulus clouds to elevated layers of absorbing aerosols may enhance or dampen the radiative effect of aerosol–radiation interactions. Here we use large-eddy simulations to investigate the sensitivity of stratocumulus clouds to the properties of an absorbing aerosol layer located above the inversion layer, with a focus on the location, timing, and strength of the radiative heat perturbation. The sign of the daily mean semi-direct effect depends on the properties and duration of the aerosol layer, the properties of the boundary layer, and the model setup. Our results suggest that the daily mean semi-direct effect is more elusive than previously assessed. We find that the daily mean semi-direct effect is dominated by the distance between the cloud and absorbing aerosol layer. Within the first 24&thinsp;h the semi-direct effect is positive but remains under 2&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span> unless the aerosol layer is directly above the cloud. For longer durations, the daily mean semi-direct effect is consistently negative but weakens by 30&thinsp;%, 60&thinsp;%, and 95&thinsp;% when the distance between the cloud and aerosol layer is 100, 250, and 500&thinsp;m, respectively. Both the cloud response and semi-direct effect increase for thinner and denser layers of absorbing aerosol. Considerable diurnal variations in the cloud response mean that an instantaneous semi-direct effect is unrepresentative of the daily mean and that observational studies may underestimate or overestimate semi-direct effects depending on the observed time of day. The cloud response is particularly sensitive to the mixing state of the boundary layer: well-mixed boundary layers generally result in a negative daily mean semi-direct effect, and poorly mixed boundary layers result in a positive daily mean semi-direct effect. The properties of the boundary layer and model setup, particularly the sea surface temperature, precipitation, and properties of the air entrained from the free troposphere, also impact the magnitude of the semi-direct effect and the timescale of adjustment. These results suggest that the semi-direct effect simulated by coarse-resolution models may be erroneous because the cloud response is sensitive to small-scale processes, especially the sources and sinks of buoyancy.</p>
ISSN:1680-7316
1680-7324