THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
<p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants u...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Moldova State University
2018-12-01
|
Series: | Studia Universitatis Moldaviae: Stiinte Exacte si Economice |
Subjects: | |
Online Access: | http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229 |
id |
doaj-8c95b5398012470b8eaa7af90a527da5 |
---|---|
record_format |
Article |
spelling |
doaj-8c95b5398012470b8eaa7af90a527da52020-11-25T00:01:37ZengMoldova State UniversityStudia Universitatis Moldaviae: Stiinte Exacte si Economice1857-20732345-10332018-12-0102 (112)1108THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREEStanislav CIUBOTARU0Institutul de Matematică și Informatică<p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants up to eighteen degree including were constructed for the mentioned system.</p><p><strong>GL(2,R) COMITAN</strong><strong>ȚII SISTEMULUI OMOGEN BIDIMENSIONAL </strong></p><p><strong> DE ECUAȚII DIFERENȚIALE DE GRADUL PATRU</strong></p><p>Pentru sistemul omogen bidimensional de ecuații diferențiale de gradul patru au fost stabilite tipurile, subtipurile și numărul de -comitanți și -invarianți ireductibili până la gradul optsprezece inclusiv. Pentru sistemul menționat, au fost construite baze polinomiale minimale ale -comitanților și ale -invarianților până la gradul optsprezece inclusiv.</p>http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stanislav CIUBOTARU |
spellingShingle |
Stanislav CIUBOTARU THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE Studia Universitatis Moldaviae: Stiinte Exacte si Economice polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis. |
author_facet |
Stanislav CIUBOTARU |
author_sort |
Stanislav CIUBOTARU |
title |
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE |
title_short |
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE |
title_full |
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE |
title_fullStr |
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE |
title_full_unstemmed |
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE |
title_sort |
gl(2,r)-comitants for the homogeneous bidimensional polynomial system of differential equations of the fourth degree |
publisher |
Moldova State University |
series |
Studia Universitatis Moldaviae: Stiinte Exacte si Economice |
issn |
1857-2073 2345-1033 |
publishDate |
2018-12-01 |
description |
<p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants up to eighteen degree including were constructed for the mentioned system.</p><p><strong>GL(2,R) COMITAN</strong><strong>ȚII SISTEMULUI OMOGEN BIDIMENSIONAL </strong></p><p><strong> DE ECUAȚII DIFERENȚIALE DE GRADUL PATRU</strong></p><p>Pentru sistemul omogen bidimensional de ecuații diferențiale de gradul patru au fost stabilite tipurile, subtipurile și numărul de -comitanți și -invarianți ireductibili până la gradul optsprezece inclusiv. Pentru sistemul menționat, au fost construite baze polinomiale minimale ale -comitanților și ale -invarianților până la gradul optsprezece inclusiv.</p> |
topic |
polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis. |
url |
http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229 |
work_keys_str_mv |
AT stanislavciubotaru thegl2rcomitantsforthehomogeneousbidimensionalpolynomialsystemofdifferentialequationsofthefourthdegree AT stanislavciubotaru gl2rcomitantsforthehomogeneousbidimensionalpolynomialsystemofdifferentialequationsofthefourthdegree |
_version_ |
1725441065237872640 |