THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE

<p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants u...

Full description

Bibliographic Details
Main Author: Stanislav CIUBOTARU
Format: Article
Language:English
Published: Moldova State University 2018-12-01
Series:Studia Universitatis Moldaviae: Stiinte Exacte si Economice
Subjects:
Online Access:http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229
id doaj-8c95b5398012470b8eaa7af90a527da5
record_format Article
spelling doaj-8c95b5398012470b8eaa7af90a527da52020-11-25T00:01:37ZengMoldova State UniversityStudia Universitatis Moldaviae: Stiinte Exacte si Economice1857-20732345-10332018-12-0102 (112)1108THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREEStanislav CIUBOTARU0Institutul de Matematică și Informatică<p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants up to eighteen degree including were constructed for the mentioned system.</p><p><strong>GL(2,R) COMITAN</strong><strong>ȚII SISTEMULUI OMOGEN BIDIMENSIONAL </strong></p><p><strong> DE ECUAȚII DIFERENȚIALE DE GRADUL PATRU</strong></p><p>Pentru sistemul omogen bidimensional de ecuații diferențiale de gradul patru au fost stabilite tipurile, subtipurile și numărul de -comitanți și -invarianți ireductibili până la gradul optsprezece inclusiv. Pentru sistemul menționat, au fost construite baze polinomiale minimale ale -comitanților și ale -invarianților până la gradul optsprezece inclusiv.</p>http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis.
collection DOAJ
language English
format Article
sources DOAJ
author Stanislav CIUBOTARU
spellingShingle Stanislav CIUBOTARU
THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
Studia Universitatis Moldaviae: Stiinte Exacte si Economice
polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis.
author_facet Stanislav CIUBOTARU
author_sort Stanislav CIUBOTARU
title THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
title_short THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
title_full THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
title_fullStr THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
title_full_unstemmed THE GL(2,R)-COMITANTS FOR THE HOMOGENEOUS BIDIMENSIONAL POLYNOMIAL SYSTEM OF DIFFERENTIAL EQUATIONS OF THE FOURTH DEGREE
title_sort gl(2,r)-comitants for the homogeneous bidimensional polynomial system of differential equations of the fourth degree
publisher Moldova State University
series Studia Universitatis Moldaviae: Stiinte Exacte si Economice
issn 1857-2073
2345-1033
publishDate 2018-12-01
description <p>For the homogeneous bidimensional polynomial system of differential equations of the fourth degree, the types, subtypes and the number of irreducible -comitants and -invariants up to the eighteen degree including were determined. A minimal polynomial bases of -comitants and of -invariants up to eighteen degree including were constructed for the mentioned system.</p><p><strong>GL(2,R) COMITAN</strong><strong>ȚII SISTEMULUI OMOGEN BIDIMENSIONAL </strong></p><p><strong> DE ECUAȚII DIFERENȚIALE DE GRADUL PATRU</strong></p><p>Pentru sistemul omogen bidimensional de ecuații diferențiale de gradul patru au fost stabilite tipurile, subtipurile și numărul de -comitanți și -invarianți ireductibili până la gradul optsprezece inclusiv. Pentru sistemul menționat, au fost construite baze polinomiale minimale ale -comitanților și ale -invarianților până la gradul optsprezece inclusiv.</p>
topic polynomial systems of differential equations, comitants, invariants, transvectants, minimal polynomial basis.
url http://ojs.studiamsu.eu/index.php/exact-economic/article/view/1229
work_keys_str_mv AT stanislavciubotaru thegl2rcomitantsforthehomogeneousbidimensionalpolynomialsystemofdifferentialequationsofthefourthdegree
AT stanislavciubotaru gl2rcomitantsforthehomogeneousbidimensionalpolynomialsystemofdifferentialequationsofthefourthdegree
_version_ 1725441065237872640