Grid-connected isolated shoot-through Z-source inverter with coupled inductor based on novel control strategy

This paper presents a new grid-connected control strategy based on a new type of Z-source inverter. For this Z-source inverter, a coupled inductor is used to displace the inductor connected to the positive of the power supply in traditional Z-source topology and its position relative to the three-ph...

Full description

Bibliographic Details
Main Authors: Hongsheng Su, Hongjian Lin
Format: Article
Language:English
Published: JVE International 2016-03-01
Series:Journal of Vibroengineering
Subjects:
Online Access:https://www.jvejournals.com/article/16457
Description
Summary:This paper presents a new grid-connected control strategy based on a new type of Z-source inverter. For this Z-source inverter, a coupled inductor is used to displace the inductor connected to the positive of the power supply in traditional Z-source topology and its position relative to the three-phase inverter bridge has changed. In contrast with traditional Z-source inverter, it can achieve higher voltage gain, lower capacitor voltage stress during steady state and suppress inrush current at startup. Last, it is modeled in two-phase static frame and then a grid-connected power loop and a capacitor voltage loop are used to realize it to connect grid. Simulation results show that by this new grid-connected strategy, this Z-source inverter can reach its grid connection with high power factor and the system can work in good stability, strong robustness and dynamic performance.
ISSN:1392-8716
2538-8460