Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study
Background: Polymerization shrinkage and fracture are the two common trouble shoots with denture base resins. Polymerization shrinkage affects the dimensional accuracy and fit of the prosthesis. The effect of zirconia (ZrO2) nanoparticles on polymerization shrinkage is not documented yet. Purpose: T...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wolters Kluwer Medknow Publications
2019-01-01
|
Series: | Journal of Pharmacy and Bioallied Sciences |
Subjects: | |
Online Access: | http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2019;volume=11;issue=6;spage=365;epage=370;aulast=Begum |
id |
doaj-8c82de461c084d338f492f0a20bcc520 |
---|---|
record_format |
Article |
spelling |
doaj-8c82de461c084d338f492f0a20bcc5202020-11-24T22:04:00ZengWolters Kluwer Medknow PublicationsJournal of Pharmacy and Bioallied Sciences0975-74062019-01-0111636537010.4103/JPBS.JPBS_36_19Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro studyS Sajida BegumR AjayV DevakiKrishnamoorthi DivyaK BaluP Arun KumarBackground: Polymerization shrinkage and fracture are the two common trouble shoots with denture base resins. Polymerization shrinkage affects the dimensional accuracy and fit of the prosthesis. The effect of zirconia (ZrO2) nanoparticles on polymerization shrinkage is not documented yet. Purpose: The aim and objective of this study were to evaluate the impact strength and dimensional accuracy of heat-cured poly methyl methacrylate (PMMA) on reinforcement with ZrO2 nanoparticles. Materials and Methods: Conventional heat-cure denture base resin (control) and the polymer reinforced with 3, 5, and 7 wt% of ZrO2 nanoparticles were prepared and used in this study. Forty bar-shaped specimens were prepared and tested for impact strength using Charpy’s type impact tester. Forty denture bases were fabricated and checked for dimensional accuracy by measuring the distance between the denture base and the cast in two different sections using the travelling microscope. Results: The impact strength decreased with increased concentration of ZrO2 and found to be least at 7 wt% concentration (2.01±0.26 J/mm2). The distance between the denture base and the cast significantly decreased both in the posterior palatal seal region (0.060±0.007cm) and mid-palatine section region (0.057±0.006cm) with ZrO2 nanoparticles reinforcement and was found to be least at 7 wt% concentration. Conclusion: Reinforcement of heat-cured PMMA with ZrO2 nanoparticles significantly increased the dimensional accuracy and decreased the impact strength.http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2019;volume=11;issue=6;spage=365;epage=370;aulast=BegumDimensional accuracyimpact strengthPMMAtravelling microscopeZrO2 nanoparticles |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S Sajida Begum R Ajay V Devaki Krishnamoorthi Divya K Balu P Arun Kumar |
spellingShingle |
S Sajida Begum R Ajay V Devaki Krishnamoorthi Divya K Balu P Arun Kumar Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study Journal of Pharmacy and Bioallied Sciences Dimensional accuracy impact strength PMMA travelling microscope ZrO2 nanoparticles |
author_facet |
S Sajida Begum R Ajay V Devaki Krishnamoorthi Divya K Balu P Arun Kumar |
author_sort |
S Sajida Begum |
title |
Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study |
title_short |
Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study |
title_full |
Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study |
title_fullStr |
Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study |
title_full_unstemmed |
Impact strength and dimensional accuracy of heat-cure denture base resin reinforced with ZrO2 nanoparticles: An in vitro study |
title_sort |
impact strength and dimensional accuracy of heat-cure denture base resin reinforced with zro2 nanoparticles: an in vitro study |
publisher |
Wolters Kluwer Medknow Publications |
series |
Journal of Pharmacy and Bioallied Sciences |
issn |
0975-7406 |
publishDate |
2019-01-01 |
description |
Background: Polymerization shrinkage and fracture are the two common trouble shoots with denture base resins. Polymerization shrinkage affects the dimensional accuracy and fit of the prosthesis. The effect of zirconia (ZrO2) nanoparticles on polymerization shrinkage is not documented yet. Purpose: The aim and objective of this study were to evaluate the impact strength and dimensional accuracy of heat-cured poly methyl methacrylate (PMMA) on reinforcement with ZrO2 nanoparticles. Materials and Methods: Conventional heat-cure denture base resin (control) and the polymer reinforced with 3, 5, and 7 wt% of ZrO2 nanoparticles were prepared and used in this study. Forty bar-shaped specimens were prepared and tested for impact strength using Charpy’s type impact tester. Forty denture bases were fabricated and checked for dimensional accuracy by measuring the distance between the denture base and the cast in two different sections using the travelling microscope. Results: The impact strength decreased with increased concentration of ZrO2 and found to be least at 7 wt% concentration (2.01±0.26 J/mm2). The distance between the denture base and the cast significantly decreased both in the posterior palatal seal region (0.060±0.007cm) and mid-palatine section region (0.057±0.006cm) with ZrO2 nanoparticles reinforcement and was found to be least at 7 wt% concentration. Conclusion: Reinforcement of heat-cured PMMA with ZrO2 nanoparticles significantly increased the dimensional accuracy and decreased the impact strength. |
topic |
Dimensional accuracy impact strength PMMA travelling microscope ZrO2 nanoparticles |
url |
http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2019;volume=11;issue=6;spage=365;epage=370;aulast=Begum |
work_keys_str_mv |
AT ssajidabegum impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy AT rajay impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy AT vdevaki impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy AT krishnamoorthidivya impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy AT kbalu impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy AT parunkumar impactstrengthanddimensionalaccuracyofheatcuredenturebaseresinreinforcedwithzro2nanoparticlesaninvitrostudy |
_version_ |
1725831143942520832 |