Microstructure and Oxidation Resistance of Cr–Al–Si Alloys for High-Temperature Applications

Cr–Al alloys are attracting much attention as heat- and corrosion-resistant coating materials due to their excellent high-temperature properties. In order to investigate the effect of aluminum content on the microstructure and oxidation resistance of Cr–Al–Si alloys, cast specimens were prepared by...

Full description

Bibliographic Details
Main Authors: Jeong-Min Kim, Chae-Young Kim
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/4/329
Description
Summary:Cr–Al alloys are attracting much attention as heat- and corrosion-resistant coating materials due to their excellent high-temperature properties. In order to investigate the effect of aluminum content on the microstructure and oxidation resistance of Cr–Al–Si alloys, cast specimens were prepared by using a vacuum-arc melting furnace, and high-temperature oxidation tests were conducted with the specimens, for 1 h, at 1100 °C, in air. In the case of cast microstructure of Cr–Al–Si alloys, it consists mainly of Cr single phase, up to 5 at.% Al, and AlCr phases were additionally formed in alloys containing 10% Al or more. In the specimen with 20% Al added, CrSi phase was also found in addition to the AlCr phase. The weight change of the specimens heated for 1 h, at 1100 °C, indicated that all had excellent oxidation resistance. However, when the Al content was less than 10%, the weight gain tended to be a little lower than that of 10% or more.
ISSN:2079-6412