The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields

The well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><...

Full description

Bibliographic Details
Main Authors: Keiji Nakatsugawa, Motoo Ohaga, Toshiyuki Fujii, Toyoki Matsuyama, Satoshi Tanda
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1603
id doaj-8c6f620d90954c16bca28e270d941b10
record_format Article
spelling doaj-8c6f620d90954c16bca28e270d941b102020-11-25T03:32:02ZengMDPI AGSymmetry2073-89942020-09-01121603160310.3390/sym12101603The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois FieldsKeiji Nakatsugawa0Motoo Ohaga1Toshiyuki Fujii2Toyoki Matsuyama3Satoshi Tanda4Department of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanDepartment of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanCenter of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628, JapanCenter of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628, JapanDepartment of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanThe well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><mi>I</mi><mi>z</mi></msub></semantics></math></inline-formula> (isospin), <i>S</i> (strangeness), etc., is constructed using group theory with real numbers <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. But, using a discrete Galois field <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">F</mi><mi>p</mi></msub></semantics></math></inline-formula> instead of <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula> and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g., three).https://www.mdpi.com/2073-8994/12/10/1603quantum theoryfinite mathematicsNakano–Nishijima–Gell-Mann formulafractional quantum numberquark confinement
collection DOAJ
language English
format Article
sources DOAJ
author Keiji Nakatsugawa
Motoo Ohaga
Toshiyuki Fujii
Toyoki Matsuyama
Satoshi Tanda
spellingShingle Keiji Nakatsugawa
Motoo Ohaga
Toshiyuki Fujii
Toyoki Matsuyama
Satoshi Tanda
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
Symmetry
quantum theory
finite mathematics
Nakano–Nishijima–Gell-Mann formula
fractional quantum number
quark confinement
author_facet Keiji Nakatsugawa
Motoo Ohaga
Toshiyuki Fujii
Toyoki Matsuyama
Satoshi Tanda
author_sort Keiji Nakatsugawa
title The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
title_short The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
title_full The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
title_fullStr The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
title_full_unstemmed The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
title_sort nakano–nishijima–gell-mann formula from discrete galois fields
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-09-01
description The well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><mi>I</mi><mi>z</mi></msub></semantics></math></inline-formula> (isospin), <i>S</i> (strangeness), etc., is constructed using group theory with real numbers <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. But, using a discrete Galois field <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">F</mi><mi>p</mi></msub></semantics></math></inline-formula> instead of <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula> and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g., three).
topic quantum theory
finite mathematics
Nakano–Nishijima–Gell-Mann formula
fractional quantum number
quark confinement
url https://www.mdpi.com/2073-8994/12/10/1603
work_keys_str_mv AT keijinakatsugawa thenakanonishijimagellmannformulafromdiscretegaloisfields
AT motooohaga thenakanonishijimagellmannformulafromdiscretegaloisfields
AT toshiyukifujii thenakanonishijimagellmannformulafromdiscretegaloisfields
AT toyokimatsuyama thenakanonishijimagellmannformulafromdiscretegaloisfields
AT satoshitanda thenakanonishijimagellmannformulafromdiscretegaloisfields
AT keijinakatsugawa nakanonishijimagellmannformulafromdiscretegaloisfields
AT motooohaga nakanonishijimagellmannformulafromdiscretegaloisfields
AT toshiyukifujii nakanonishijimagellmannformulafromdiscretegaloisfields
AT toyokimatsuyama nakanonishijimagellmannformulafromdiscretegaloisfields
AT satoshitanda nakanonishijimagellmannformulafromdiscretegaloisfields
_version_ 1724570122678435840