The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields
The well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/10/1603 |
id |
doaj-8c6f620d90954c16bca28e270d941b10 |
---|---|
record_format |
Article |
spelling |
doaj-8c6f620d90954c16bca28e270d941b102020-11-25T03:32:02ZengMDPI AGSymmetry2073-89942020-09-01121603160310.3390/sym12101603The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois FieldsKeiji Nakatsugawa0Motoo Ohaga1Toshiyuki Fujii2Toyoki Matsuyama3Satoshi Tanda4Department of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanDepartment of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanCenter of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628, JapanCenter of Education and Research for Topological Science and Technology, Hokkaido University, Sapporo 060-8628, JapanDepartment of Applied Physics, Hokkaido University, Sapporo 060-8628, JapanThe well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><mi>I</mi><mi>z</mi></msub></semantics></math></inline-formula> (isospin), <i>S</i> (strangeness), etc., is constructed using group theory with real numbers <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. But, using a discrete Galois field <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">F</mi><mi>p</mi></msub></semantics></math></inline-formula> instead of <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula> and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g., three).https://www.mdpi.com/2073-8994/12/10/1603quantum theoryfinite mathematicsNakano–Nishijima–Gell-Mann formulafractional quantum numberquark confinement |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Keiji Nakatsugawa Motoo Ohaga Toshiyuki Fujii Toyoki Matsuyama Satoshi Tanda |
spellingShingle |
Keiji Nakatsugawa Motoo Ohaga Toshiyuki Fujii Toyoki Matsuyama Satoshi Tanda The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields Symmetry quantum theory finite mathematics Nakano–Nishijima–Gell-Mann formula fractional quantum number quark confinement |
author_facet |
Keiji Nakatsugawa Motoo Ohaga Toshiyuki Fujii Toyoki Matsuyama Satoshi Tanda |
author_sort |
Keiji Nakatsugawa |
title |
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields |
title_short |
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields |
title_full |
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields |
title_fullStr |
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields |
title_full_unstemmed |
The Nakano–Nishijima–Gell-Mann Formula from Discrete Galois Fields |
title_sort |
nakano–nishijima–gell-mann formula from discrete galois fields |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-09-01 |
description |
The well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers <inline-formula><math display="inline"><semantics><msub><mi>I</mi><mi>z</mi></msub></semantics></math></inline-formula> (isospin), <i>S</i> (strangeness), etc., is constructed using group theory with real numbers <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>. But, using a discrete Galois field <inline-formula><math display="inline"><semantics><msub><mi mathvariant="double-struck">F</mi><mi>p</mi></msub></semantics></math></inline-formula> instead of <inline-formula><math display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula> and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g., three). |
topic |
quantum theory finite mathematics Nakano–Nishijima–Gell-Mann formula fractional quantum number quark confinement |
url |
https://www.mdpi.com/2073-8994/12/10/1603 |
work_keys_str_mv |
AT keijinakatsugawa thenakanonishijimagellmannformulafromdiscretegaloisfields AT motooohaga thenakanonishijimagellmannformulafromdiscretegaloisfields AT toshiyukifujii thenakanonishijimagellmannformulafromdiscretegaloisfields AT toyokimatsuyama thenakanonishijimagellmannformulafromdiscretegaloisfields AT satoshitanda thenakanonishijimagellmannformulafromdiscretegaloisfields AT keijinakatsugawa nakanonishijimagellmannformulafromdiscretegaloisfields AT motooohaga nakanonishijimagellmannformulafromdiscretegaloisfields AT toshiyukifujii nakanonishijimagellmannformulafromdiscretegaloisfields AT toyokimatsuyama nakanonishijimagellmannformulafromdiscretegaloisfields AT satoshitanda nakanonishijimagellmannformulafromdiscretegaloisfields |
_version_ |
1724570122678435840 |