Hyperspectral Image-Based Variety Classification of Waxy Maize Seeds by the t-SNE Model and Procrustes Analysis

Variety classification is an important step in seed quality testing. This study introduces t-distributed stochastic neighbourhood embedding (t-SNE), a manifold learning algorithm, into the field of hyperspectral imaging (HSI) and proposes a method for classifying seed varieties. Images of 800 maize...

Full description

Bibliographic Details
Main Authors: Aimin Miao, Jiajun Zhuang, Yu Tang, Yong He, Xuan Chu, Shaoming Luo
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/12/4391
Description
Summary:Variety classification is an important step in seed quality testing. This study introduces t-distributed stochastic neighbourhood embedding (t-SNE), a manifold learning algorithm, into the field of hyperspectral imaging (HSI) and proposes a method for classifying seed varieties. Images of 800 maize kernels of eight varieties (100 kernels per variety, 50 kernels for each side of the seed) were imaged in the visible- near infrared (386.7⁻1016.7 nm) wavelength range. The images were pre-processed by Procrustes analysis (PA) to improve the classification accuracy, and then these data were reduced to low-dimensional space using t-SNE. Finally, Fisher’s discriminant analysis (FDA) was used for classification of the low-dimensional data. To compare the effect of t-SNE, principal component analysis (PCA), kernel principal component analysis (KPCA) and locally linear embedding (LLE) were used as comparative methods in this study, and the results demonstrated that the t-SNE model with PA pre-processing has obtained better classification results. The highest classification accuracy of the t-SNE model was up to 97.5%, which was much more satisfactory than the results of the other models (up to 75% for PCA, 85% for KPCA, 76.25% for LLE). The overall results indicated that the t-SNE model with PA pre-processing can be used for variety classification of waxy maize seeds and be considered as a new method for hyperspectral image analysis.
ISSN:1424-8220