Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers.

At the root of the so-called precision medicine or precision oncology, which is our focus here, is the hypothesis that cancer treatment would be considerably better if therapies were guided by a tumor's genomic alterations. This hypothesis has sparked major initiatives focusing on whole-genome...

Full description

Bibliographic Details
Main Authors: Ruth Nussinov, Hyunbum Jang, Chung-Jung Tsai, Feixiong Cheng
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-03-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1006658
Description
Summary:At the root of the so-called precision medicine or precision oncology, which is our focus here, is the hypothesis that cancer treatment would be considerably better if therapies were guided by a tumor's genomic alterations. This hypothesis has sparked major initiatives focusing on whole-genome and/or exome sequencing, creation of large databases, and developing tools for their statistical analyses-all aspiring to identify actionable alterations, and thus molecular targets, in a patient. At the center of the massive amount of collected sequence data is their interpretations that largely rest on statistical analysis and phenotypic observations. Statistics is vital, because it guides identification of cancer-driving alterations. However, statistics of mutations do not identify a change in protein conformation; therefore, it may not define sufficiently accurate actionable mutations, neglecting those that are rare. Among the many thematic overviews of precision oncology, this review innovates by further comprehensively including precision pharmacology, and within this framework, articulating its protein structural landscape and consequences to cellular signaling pathways. It provides the underlying physicochemical basis, thereby also opening the door to a broader community.
ISSN:1553-734X
1553-7358