Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity

We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.

Bibliographic Details
Main Authors: Blessings T. Fundikwa, Jaya P. Mazorodze, Simon Mukwembi
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2020/8982474
id doaj-8c2e4264b5b14bbc81e8c5199ce21a52
record_format Article
spelling doaj-8c2e4264b5b14bbc81e8c5199ce21a522020-11-25T03:05:32ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252020-01-01202010.1155/2020/89824748982474Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge ConnectivityBlessings T. Fundikwa0Jaya P. Mazorodze1Simon Mukwembi2Department of Mathematics, University of Zimbabwe, Harare, ZimbabweDepartment of Mathematics, University of Zimbabwe, Harare, ZimbabweSchool of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South AfricaWe present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.http://dx.doi.org/10.1155/2020/8982474
collection DOAJ
language English
format Article
sources DOAJ
author Blessings T. Fundikwa
Jaya P. Mazorodze
Simon Mukwembi
spellingShingle Blessings T. Fundikwa
Jaya P. Mazorodze
Simon Mukwembi
Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
International Journal of Mathematics and Mathematical Sciences
author_facet Blessings T. Fundikwa
Jaya P. Mazorodze
Simon Mukwembi
author_sort Blessings T. Fundikwa
title Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
title_short Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
title_full Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
title_fullStr Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
title_full_unstemmed Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
title_sort upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2020-01-01
description We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.
url http://dx.doi.org/10.1155/2020/8982474
work_keys_str_mv AT blessingstfundikwa upperboundsonthediameterofbipartiteandtrianglefreegraphswithprescribededgeconnectivity
AT jayapmazorodze upperboundsonthediameterofbipartiteandtrianglefreegraphswithprescribededgeconnectivity
AT simonmukwembi upperboundsonthediameterofbipartiteandtrianglefreegraphswithprescribededgeconnectivity
_version_ 1715308675545956352