Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.

Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative alg...

Full description

Bibliographic Details
Main Authors: Jingzhe Wang, Tashpolat Tiyip, Jianli Ding, Dong Zhang, Wei Liu, Fei Wang, Nigara Tashpolat
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5608292?pdf=render
id doaj-8bdca2fed3bb47d0bb6090b5d7f697f3
record_format Article
spelling doaj-8bdca2fed3bb47d0bb6090b5d7f697f32020-11-24T21:30:02ZengPublic Library of Science (PLoS)PLoS ONE1932-62032017-01-01129e018483610.1371/journal.pone.0184836Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.Jingzhe WangTashpolat TiyipJianli DingDong ZhangWei LiuFei WangNigara TashpolatEffective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration ([Formula: see text]), root mean square errors of calibration (RMSEC), determinant coefficients of prediction ([Formula: see text]), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance ([Formula: see text] = 0.907, RMSEC = 0.425%, [Formula: see text] = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance ([Formula: see text] = 0.888, RMSEC = 0.446%, [Formula: see text] = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area.http://europepmc.org/articles/PMC5608292?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Jingzhe Wang
Tashpolat Tiyip
Jianli Ding
Dong Zhang
Wei Liu
Fei Wang
Nigara Tashpolat
spellingShingle Jingzhe Wang
Tashpolat Tiyip
Jianli Ding
Dong Zhang
Wei Liu
Fei Wang
Nigara Tashpolat
Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
PLoS ONE
author_facet Jingzhe Wang
Tashpolat Tiyip
Jianli Ding
Dong Zhang
Wei Liu
Fei Wang
Nigara Tashpolat
author_sort Jingzhe Wang
title Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
title_short Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
title_full Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
title_fullStr Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
title_full_unstemmed Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
title_sort desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2017-01-01
description Effective pretreatment of spectral reflectance is vital to model accuracy in soil parameter estimation. However, the classic integer derivative has some disadvantages, including spectral information loss and the introduction of high-frequency noise. In this paper, the fractional order derivative algorithm was applied to the pretreatment and partial least squares regression (PLSR) was used to assess the clay content of desert soils. Overall, 103 soil samples were collected from the Ebinur Lake basin in the Xinjiang Uighur Autonomous Region of China, and used as data sets for calibration and validation. Following laboratory measurements of spectral reflectance and clay content, the raw spectral reflectance and absorbance data were treated using the fractional derivative order from the 0.0 to the 2.0 order (order interval: 0.2). The ratio of performance to deviation (RPD), determinant coefficients of calibration ([Formula: see text]), root mean square errors of calibration (RMSEC), determinant coefficients of prediction ([Formula: see text]), and root mean square errors of prediction (RMSEP) were applied to assess the performance of predicting models. The results showed that models built on the fractional derivative order performed better than when using the classic integer derivative. Comparison of the predictive effects of 22 models for estimating clay content, calibrated by PLSR, showed that those models based on the fractional derivative 1.8 order of spectral reflectance ([Formula: see text] = 0.907, RMSEC = 0.425%, [Formula: see text] = 0.916, RMSEP = 0.364%, and RPD = 2.484 ≥ 2.000) and absorbance ([Formula: see text] = 0.888, RMSEC = 0.446%, [Formula: see text] = 0.918, RMSEP = 0.383% and RPD = 2.511 ≥ 2.000) were most effective. Furthermore, they performed well in quantitative estimations of the clay content of soils in the study area.
url http://europepmc.org/articles/PMC5608292?pdf=render
work_keys_str_mv AT jingzhewang desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT tashpolattiyip desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT jianliding desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT dongzhang desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT weiliu desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT feiwang desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
AT nigaratashpolat desertsoilclaycontentestimationusingreflectancespectroscopypreprocessedbyfractionalderivative
_version_ 1725964381155491840