Decomposition of Gaussian processes, and factorization of positive definite kernels
We establish a duality for two factorization questions, one for general positive definite (p.d.) kernels \(K\), and the other for Gaussian processes, say \(V\). The latter notion, for Gaussian processes is stated via Ito-integration. Our approach to factorization for p.d. kernels is intuitively moti...
Main Authors: | Palle Jorgensen, Feng Tian |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2019-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol39/4/art/opuscula_math_3930.pdf |
Similar Items
-
Reproducing Kernel Hilbert Space vs. Frame Estimates
by: Palle E. T. Jorgensen, et al.
Published: (2015-07-01) -
Positive definite kernels, harmonic analysis, and boundary spaces: Drury-Arveson theory, and related
by: Sabree, Aqeeb A
Published: (2019) -
A Kernel-Based Metric for Balance Assessment
by: Zhu Yeying, et al.
Published: (2018-09-01) -
Remarks on kernel Bayes’ rule
by: Hisashi Johno, et al.
Published: (2018-01-01) -
Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation
by: Esra Karatas Akgül
Published: (2018-04-01)