Stability Analysis of Milling Process with Multiple Delays

Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect,...

Full description

Bibliographic Details
Main Authors: Yonggang Mei, Rong Mo, Huibin Sun, Bingbing He, Kun Bu
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/10/3646
Description
Summary:Cutting chatter is extremely harmful to the machining process, and it is of great significance to eliminate chatter through analyzing the stability of the machining process. In this work, the stability of the milling process with multiple delays is investigated. Considering the regeneration effect, the dynamics of the milling process with variable pitch cutter is modeled as periodic coefficients delayed differential equations (DDEs) with multiple delays. An adaptive variable-step numerical integration method (AVSNIM) considering the effect of the helix angle is developed firstly, which can discretize the cutting period accurately, thereby improving the calculation accuracy of the stability limit of the milling process. The accuracy and efficiency of the AVSNIM are verified through a benchmark milling model. Subsequently, a novel spindle speed-dependent discretization algorithm is proposed, which is combined with the AVSNIM to further reduce the calculation time of the stability lobes diagram (SLD). The simulation experiment results demonstrate that the proposed algorithm can effectively reduce the calculation time.
ISSN:2076-3417