Multiple-shot and unambiguous discrimination of von Neumann measurements

We present an in-depth study of the problem of multiple-shot discrimination of von Neumann measurements in finite-dimensional Hilbert spaces. Specifically, we consider two scenarios: minimum error and unambiguous discrimination. In the case of minimum error discrimination, we focus on discrimination...

Full description

Bibliographic Details
Main Authors: Zbigniew Puchała, Łukasz Pawela, Aleksandra Krawiec, Ryszard Kukulski, Michał Oszmaniec
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2021-04-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2021-04-06-425/pdf/
id doaj-8bb743823fcd4115b10d1c682524a328
record_format Article
spelling doaj-8bb743823fcd4115b10d1c682524a3282021-04-06T13:38:35ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2021-04-01542510.22331/q-2021-04-06-42510.22331/q-2021-04-06-425Multiple-shot and unambiguous discrimination of von Neumann measurementsZbigniew PuchałaŁukasz PawelaAleksandra KrawiecRyszard KukulskiMichał OszmaniecWe present an in-depth study of the problem of multiple-shot discrimination of von Neumann measurements in finite-dimensional Hilbert spaces. Specifically, we consider two scenarios: minimum error and unambiguous discrimination. In the case of minimum error discrimination, we focus on discrimination of measurements with the assistance of entanglement. We provide an alternative proof of the fact that all pairs of distinct von Neumann measurements can be distinguished perfectly (i.e. with the unit success probability) using only a finite number of queries. Moreover, we analytically find the minimal number of queries needed for perfect discrimination. We also show that in this scenario querying the measurements $\textit{in parallel}$ gives the optimal strategy, and hence any possible adaptive methods do not offer any advantage over the parallel scheme. In the unambiguous discrimination scenario, we give the general expressions for the optimal discrimination probabilities with and without the assistance of entanglement. Finally, we show that typical pairs of Haar-random von Neumann measurements can be perfectly distinguished with only two queries.https://quantum-journal.org/papers/q-2021-04-06-425/pdf/
collection DOAJ
language English
format Article
sources DOAJ
author Zbigniew Puchała
Łukasz Pawela
Aleksandra Krawiec
Ryszard Kukulski
Michał Oszmaniec
spellingShingle Zbigniew Puchała
Łukasz Pawela
Aleksandra Krawiec
Ryszard Kukulski
Michał Oszmaniec
Multiple-shot and unambiguous discrimination of von Neumann measurements
Quantum
author_facet Zbigniew Puchała
Łukasz Pawela
Aleksandra Krawiec
Ryszard Kukulski
Michał Oszmaniec
author_sort Zbigniew Puchała
title Multiple-shot and unambiguous discrimination of von Neumann measurements
title_short Multiple-shot and unambiguous discrimination of von Neumann measurements
title_full Multiple-shot and unambiguous discrimination of von Neumann measurements
title_fullStr Multiple-shot and unambiguous discrimination of von Neumann measurements
title_full_unstemmed Multiple-shot and unambiguous discrimination of von Neumann measurements
title_sort multiple-shot and unambiguous discrimination of von neumann measurements
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
series Quantum
issn 2521-327X
publishDate 2021-04-01
description We present an in-depth study of the problem of multiple-shot discrimination of von Neumann measurements in finite-dimensional Hilbert spaces. Specifically, we consider two scenarios: minimum error and unambiguous discrimination. In the case of minimum error discrimination, we focus on discrimination of measurements with the assistance of entanglement. We provide an alternative proof of the fact that all pairs of distinct von Neumann measurements can be distinguished perfectly (i.e. with the unit success probability) using only a finite number of queries. Moreover, we analytically find the minimal number of queries needed for perfect discrimination. We also show that in this scenario querying the measurements $\textit{in parallel}$ gives the optimal strategy, and hence any possible adaptive methods do not offer any advantage over the parallel scheme. In the unambiguous discrimination scenario, we give the general expressions for the optimal discrimination probabilities with and without the assistance of entanglement. Finally, we show that typical pairs of Haar-random von Neumann measurements can be perfectly distinguished with only two queries.
url https://quantum-journal.org/papers/q-2021-04-06-425/pdf/
work_keys_str_mv AT zbigniewpuchała multipleshotandunambiguousdiscriminationofvonneumannmeasurements
AT łukaszpawela multipleshotandunambiguousdiscriminationofvonneumannmeasurements
AT aleksandrakrawiec multipleshotandunambiguousdiscriminationofvonneumannmeasurements
AT ryszardkukulski multipleshotandunambiguousdiscriminationofvonneumannmeasurements
AT michałoszmaniec multipleshotandunambiguousdiscriminationofvonneumannmeasurements
_version_ 1721538131029655552