New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption
Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/22/8/863 |
id |
doaj-8ba0d171113540feb7e4b912db5ac61a |
---|---|
record_format |
Article |
spelling |
doaj-8ba0d171113540feb7e4b912db5ac61a2020-11-25T01:22:59ZengMDPI AGEntropy1099-43002020-08-012286386310.3390/e22080863New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power ConsumptionJiří Tomčala0IT4Innovations, VSB—Technical University of Ostrava, 17.listopadu 2172/15, 70833 Ostrava-Poruba, Czech RepublicApproximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed.https://www.mdpi.com/1099-4300/22/8/863entropymeasure of complexityapproximate entropysample entropyfast approximate entropyfast sample entropy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jiří Tomčala |
spellingShingle |
Jiří Tomčala New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption Entropy entropy measure of complexity approximate entropy sample entropy fast approximate entropy fast sample entropy |
author_facet |
Jiří Tomčala |
author_sort |
Jiří Tomčala |
title |
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption |
title_short |
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption |
title_full |
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption |
title_fullStr |
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption |
title_full_unstemmed |
New Fast ApEn and SampEn Entropy Algorithms Implementation and Their Application to Supercomputer Power Consumption |
title_sort |
new fast apen and sampen entropy algorithms implementation and their application to supercomputer power consumption |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2020-08-01 |
description |
Approximate Entropy and especially Sample Entropy are recently frequently used algorithms for calculating the measure of complexity of a time series. A lesser known fact is that there are also accelerated modifications of these two algorithms, namely Fast Approximate Entropy and Fast Sample Entropy. All these algorithms are effectively implemented in the R software package TSEntropies. This paper contains not only an explanation of all these algorithms, but also the principle of their acceleration. Furthermore, the paper contains a description of the functions of this software package and their parameters, as well as simple examples of using this software package to calculate these measures of complexity of an artificial time series and the time series of a complex real-world system represented by the course of supercomputer infrastructure power consumption. These time series were also used to test the speed of this package and to compare its speed with another R package pracma. The results show that TSEntropies is up to 100 times faster than pracma and another important result is that the computational times of the new Fast Approximate Entropy and Fast Sample Entropy algorithms are up to 500 times lower than the computational times of their original versions. At the very end of this paper, the possible use of this software package TSEntropies is proposed. |
topic |
entropy measure of complexity approximate entropy sample entropy fast approximate entropy fast sample entropy |
url |
https://www.mdpi.com/1099-4300/22/8/863 |
work_keys_str_mv |
AT jiritomcala newfastapenandsampenentropyalgorithmsimplementationandtheirapplicationtosupercomputerpowerconsumption |
_version_ |
1725124182604251136 |