Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression

Precision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting a...

Full description

Bibliographic Details
Main Authors: Lina Herlina Tresnawati, Wisnu Ananta Kusuma, Sony Hartono Wijaya, Lailan Sahrina Hasibuan
Format: Article
Language:English
Published: Universitas Gadjah Mada 2019-11-01
Series:Jurnal Nasional Teknik Elektro dan Teknologi Informasi
Subjects:
Online Access:http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531
id doaj-8b7665395e6345b8a7e371c5c472ec39
record_format Article
spelling doaj-8b7665395e6345b8a7e371c5c472ec392020-11-25T03:35:56ZengUniversitas Gadjah MadaJurnal Nasional Teknik Elektro dan Teknologi Informasi2301-41562460-57192019-11-018410.22146/jnteti.v8i4.531461Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest RegressionLina Herlina Tresnawati0Wisnu Ananta Kusuma1Sony Hartono Wijaya2Lailan Sahrina Hasibuan3Institut Pertanian BogorInstitut Pertanian BogorInstitut Pertanian BogorInstitut Pertanian BogorPrecision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting association. The purpose of this paper was to associate SNP with T2D phenotypes. SNP ranking was conducted to choose significant SNPs by calculating importance score. Selected SNPs were associated with T2D phenotype using random forest regression. Moreover, the epistasis was also examined to show the interactions among SNPs affecting phenotype. This paper obtained 301 importance SNPs. Top ten SNPs have association with five T2D protein candidates. The evaluation results of the proposed models showed the Mean Absolute Error (MAE) of 0.062. This results indicate the success of random forest regression in conducting SNP and phenotype association and epistatic examination between two SNPshttp://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism
collection DOAJ
language English
format Article
sources DOAJ
author Lina Herlina Tresnawati
Wisnu Ananta Kusuma
Sony Hartono Wijaya
Lailan Sahrina Hasibuan
spellingShingle Lina Herlina Tresnawati
Wisnu Ananta Kusuma
Sony Hartono Wijaya
Lailan Sahrina Hasibuan
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
Jurnal Nasional Teknik Elektro dan Teknologi Informasi
diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism
author_facet Lina Herlina Tresnawati
Wisnu Ananta Kusuma
Sony Hartono Wijaya
Lailan Sahrina Hasibuan
author_sort Lina Herlina Tresnawati
title Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
title_short Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
title_full Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
title_fullStr Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
title_full_unstemmed Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
title_sort asosiasi single nucleotide polymorphism pada diabetes mellitus tipe 2 menggunakan random forest regression
publisher Universitas Gadjah Mada
series Jurnal Nasional Teknik Elektro dan Teknologi Informasi
issn 2301-4156
2460-5719
publishDate 2019-11-01
description Precision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting association. The purpose of this paper was to associate SNP with T2D phenotypes. SNP ranking was conducted to choose significant SNPs by calculating importance score. Selected SNPs were associated with T2D phenotype using random forest regression. Moreover, the epistasis was also examined to show the interactions among SNPs affecting phenotype. This paper obtained 301 importance SNPs. Top ten SNPs have association with five T2D protein candidates. The evaluation results of the proposed models showed the Mean Absolute Error (MAE) of 0.062. This results indicate the success of random forest regression in conducting SNP and phenotype association and epistatic examination between two SNPs
topic diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism
url http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531
work_keys_str_mv AT linaherlinatresnawati asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression
AT wisnuanantakusuma asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression
AT sonyhartonowijaya asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression
AT lailansahrinahasibuan asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression
_version_ 1724552335671164928