Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression
Precision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting a...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Gadjah Mada
2019-11-01
|
Series: | Jurnal Nasional Teknik Elektro dan Teknologi Informasi |
Subjects: | |
Online Access: | http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531 |
id |
doaj-8b7665395e6345b8a7e371c5c472ec39 |
---|---|
record_format |
Article |
spelling |
doaj-8b7665395e6345b8a7e371c5c472ec392020-11-25T03:35:56ZengUniversitas Gadjah MadaJurnal Nasional Teknik Elektro dan Teknologi Informasi2301-41562460-57192019-11-018410.22146/jnteti.v8i4.531461Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest RegressionLina Herlina Tresnawati0Wisnu Ananta Kusuma1Sony Hartono Wijaya2Lailan Sahrina Hasibuan3Institut Pertanian BogorInstitut Pertanian BogorInstitut Pertanian BogorInstitut Pertanian BogorPrecision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting association. The purpose of this paper was to associate SNP with T2D phenotypes. SNP ranking was conducted to choose significant SNPs by calculating importance score. Selected SNPs were associated with T2D phenotype using random forest regression. Moreover, the epistasis was also examined to show the interactions among SNPs affecting phenotype. This paper obtained 301 importance SNPs. Top ten SNPs have association with five T2D protein candidates. The evaluation results of the proposed models showed the Mean Absolute Error (MAE) of 0.062. This results indicate the success of random forest regression in conducting SNP and phenotype association and epistatic examination between two SNPshttp://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lina Herlina Tresnawati Wisnu Ananta Kusuma Sony Hartono Wijaya Lailan Sahrina Hasibuan |
spellingShingle |
Lina Herlina Tresnawati Wisnu Ananta Kusuma Sony Hartono Wijaya Lailan Sahrina Hasibuan Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression Jurnal Nasional Teknik Elektro dan Teknologi Informasi diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism |
author_facet |
Lina Herlina Tresnawati Wisnu Ananta Kusuma Sony Hartono Wijaya Lailan Sahrina Hasibuan |
author_sort |
Lina Herlina Tresnawati |
title |
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression |
title_short |
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression |
title_full |
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression |
title_fullStr |
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression |
title_full_unstemmed |
Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression |
title_sort |
asosiasi single nucleotide polymorphism pada diabetes mellitus tipe 2 menggunakan random forest regression |
publisher |
Universitas Gadjah Mada |
series |
Jurnal Nasional Teknik Elektro dan Teknologi Informasi |
issn |
2301-4156 2460-5719 |
publishDate |
2019-11-01 |
description |
Precision medicine can be developed by determining association between genomic data, represented by Single Nucleotide Polymorphism (SNP), and phenotype of diabetes mellitus type 2 (T2D). The number of SNP is actually very abundance. Thus, sorting and filtering the SNP is required before conducting association. The purpose of this paper was to associate SNP with T2D phenotypes. SNP ranking was conducted to choose significant SNPs by calculating importance score. Selected SNPs were associated with T2D phenotype using random forest regression. Moreover, the epistasis was also examined to show the interactions among SNPs affecting phenotype. This paper obtained 301 importance SNPs. Top ten SNPs have association with five T2D protein candidates. The evaluation results of the proposed models showed the Mean Absolute Error (MAE) of 0.062. This results indicate the success of random forest regression in conducting SNP and phenotype association and epistatic examination between two SNPs |
topic |
diabetes mellitus tipe 2; epistatis; pemetaan asosiasi; random forest regression; single nucleotide polymorphism |
url |
http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/531 |
work_keys_str_mv |
AT linaherlinatresnawati asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression AT wisnuanantakusuma asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression AT sonyhartonowijaya asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression AT lailansahrinahasibuan asosiasisinglenucleotidepolymorphismpadadiabetesmellitustipe2menggunakanrandomforestregression |
_version_ |
1724552335671164928 |