Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices.
Retinal and intra-retinal layer thicknesses are routinely generated from optical coherence tomography (OCT) images, but on-board software capabilities and image scaling assumptions are not consistent across devices. This study evaluates the device-independent Iowa Reference Algorithms (Iowa Institut...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5010216?pdf=render |
id |
doaj-8b6c60b2c79d43598e4cafaf20e139a2 |
---|---|
record_format |
Article |
spelling |
doaj-8b6c60b2c79d43598e4cafaf20e139a22020-11-25T00:05:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01119e016200110.1371/journal.pone.0162001Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices.Louise TerryNicola CasselsKelly LuJennifer H ActonTom H MargrainRachel V NorthJames FergussonNick WhiteAshley WoodRetinal and intra-retinal layer thicknesses are routinely generated from optical coherence tomography (OCT) images, but on-board software capabilities and image scaling assumptions are not consistent across devices. This study evaluates the device-independent Iowa Reference Algorithms (Iowa Institute for Biomedical Imaging) for automated intra-retinal layer segmentation and image scaling for three OCT systems. Healthy participants (n = 25) underwent macular volume scans using a Cirrus HD-OCT (Zeiss), 3D-OCT 1000 (Topcon), and a non-commercial long-wavelength (1040nm) OCT on two occasions. Mean thickness of 10 intra-retinal layers was measured in three ETDRS subfields (fovea, inner ring and outer ring) using the Iowa Reference Algorithms. Where available, total retinal thicknesses were measured using on-board software. Measured axial eye length (AEL)-dependent scaling was used throughout, with a comparison made to the system-specific fixed-AEL scaling. Inter-session repeatability and agreement between OCT systems and segmentation methods was assessed. Inter-session coefficient of repeatability (CoR) for the foveal subfield total retinal thickness was 3.43μm, 4.76μm, and 5.98μm for the Zeiss, Topcon, and long-wavelength images respectively. For the commercial software, CoR was 4.63μm (Zeiss) and 7.63μm (Topcon). The Iowa Reference Algorithms demonstrated higher repeatability than the on-board software and, in addition, reliably segmented all 10 intra-retinal layers. With fixed-AEL scaling, the algorithm produced significantly different thickness values for the three OCT devices (P<0.05), with these discrepancies generally characterized by an overall offset (bias) and correlations with axial eye length for the foveal subfield and outer ring (P<0.05). This correlation was reduced to an insignificant level in all cases when AEL-dependent scaling was used. Overall, the Iowa Reference Algorithms are viable for clinical and research use in healthy eyes imaged with these devices, however ocular biometry is required for accurate quantification of OCT images.http://europepmc.org/articles/PMC5010216?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Louise Terry Nicola Cassels Kelly Lu Jennifer H Acton Tom H Margrain Rachel V North James Fergusson Nick White Ashley Wood |
spellingShingle |
Louise Terry Nicola Cassels Kelly Lu Jennifer H Acton Tom H Margrain Rachel V North James Fergusson Nick White Ashley Wood Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. PLoS ONE |
author_facet |
Louise Terry Nicola Cassels Kelly Lu Jennifer H Acton Tom H Margrain Rachel V North James Fergusson Nick White Ashley Wood |
author_sort |
Louise Terry |
title |
Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. |
title_short |
Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. |
title_full |
Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. |
title_fullStr |
Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. |
title_full_unstemmed |
Automated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices. |
title_sort |
automated retinal layer segmentation using spectral domain optical coherence tomography: evaluation of inter-session repeatability and agreement between devices. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Retinal and intra-retinal layer thicknesses are routinely generated from optical coherence tomography (OCT) images, but on-board software capabilities and image scaling assumptions are not consistent across devices. This study evaluates the device-independent Iowa Reference Algorithms (Iowa Institute for Biomedical Imaging) for automated intra-retinal layer segmentation and image scaling for three OCT systems. Healthy participants (n = 25) underwent macular volume scans using a Cirrus HD-OCT (Zeiss), 3D-OCT 1000 (Topcon), and a non-commercial long-wavelength (1040nm) OCT on two occasions. Mean thickness of 10 intra-retinal layers was measured in three ETDRS subfields (fovea, inner ring and outer ring) using the Iowa Reference Algorithms. Where available, total retinal thicknesses were measured using on-board software. Measured axial eye length (AEL)-dependent scaling was used throughout, with a comparison made to the system-specific fixed-AEL scaling. Inter-session repeatability and agreement between OCT systems and segmentation methods was assessed. Inter-session coefficient of repeatability (CoR) for the foveal subfield total retinal thickness was 3.43μm, 4.76μm, and 5.98μm for the Zeiss, Topcon, and long-wavelength images respectively. For the commercial software, CoR was 4.63μm (Zeiss) and 7.63μm (Topcon). The Iowa Reference Algorithms demonstrated higher repeatability than the on-board software and, in addition, reliably segmented all 10 intra-retinal layers. With fixed-AEL scaling, the algorithm produced significantly different thickness values for the three OCT devices (P<0.05), with these discrepancies generally characterized by an overall offset (bias) and correlations with axial eye length for the foveal subfield and outer ring (P<0.05). This correlation was reduced to an insignificant level in all cases when AEL-dependent scaling was used. Overall, the Iowa Reference Algorithms are viable for clinical and research use in healthy eyes imaged with these devices, however ocular biometry is required for accurate quantification of OCT images. |
url |
http://europepmc.org/articles/PMC5010216?pdf=render |
work_keys_str_mv |
AT louiseterry automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT nicolacassels automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT kellylu automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT jenniferhacton automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT tomhmargrain automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT rachelvnorth automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT jamesfergusson automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT nickwhite automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices AT ashleywood automatedretinallayersegmentationusingspectraldomainopticalcoherencetomographyevaluationofintersessionrepeatabilityandagreementbetweendevices |
_version_ |
1725423494155468800 |