Application of poly(lactic-co-glycolic acid) in the treatment of pulp diseases
The development of materials science is of great significance to the treatment of dental pulp diseases. Poly lactic acid glycolic acid (PLGA) copolymer is an organic macromolecule compound that is widely used in the preparation of biomedical materials. In recent years, PLGA, as a drug/molecular load...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | zho |
Published: |
Editorial Department of Journal of Prevention and Treatment for Stomatological Diseases
2021-03-01
|
Series: | 口腔疾病防治 |
Subjects: | |
Online Access: | http://www.kqjbfz.com/CN/10.12016/j.issn.2096-1456.2021.03.011 |
Summary: | The development of materials science is of great significance to the treatment of dental pulp diseases. Poly lactic acid glycolic acid (PLGA) copolymer is an organic macromolecule compound that is widely used in the preparation of biomedical materials. In recent years, PLGA, as a drug/molecular loaded system and tissue regeneration scaffold, has shown prospects for application in the treatment of dental pulp diseases. This paper will review the application of PLGA in the treatment of dental pulp diseases and provide a basis for its further development and utilization. The results of the literature review show that PLGA is a drug/molecular delivery system that is mainly used in the improvement of pulp capping materials, root canal disinfectant and apexification materials. PLGA-improved pulp capping agents can prolong the action time of the drug and reduce toxicity. The modified root canal disinfectant can realize the sustained release of drug, make the drug penetrate deeper into the subtle structure, and contact more widely with the pathogenic bacteria. The modified apexification materials can provide more convenient administration methods for apexifixment. As a scaffold for tissue engineering, PLGA is mainly used in the study of pulp regeneration. The optimization of PLGA physical properties and action environment can provide a more suitable microenvironment for seed cells to proliferate and differentiate. How to utilize the advantages of PLGA to develop a more suitable material for endodontic application needs further study. |
---|---|
ISSN: | 2096-1456 2096-1456 |