Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection
Staphylococcus aureus is an important human pathogen, but studies of the organism have suffered from the lack of a robust tool set for its genetic and genomic manipulation. Here we report the development of a system for the facile and high-throughput genomic engineering of S. aureus using single-str...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Society for Microbiology
2018-02-01
|
Series: | mBio |
Online Access: | http://mbio.asm.org/cgi/content/full/9/1/e00067-18 |
id |
doaj-8b53b94eb59a48a7a34bcbf7bed93a2f |
---|---|
record_format |
Article |
spelling |
doaj-8b53b94eb59a48a7a34bcbf7bed93a2f2021-07-02T13:58:52ZengAmerican Society for MicrobiologymBio2150-75112018-02-0191e00067-1810.1128/mBio.00067-18Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated CounterselectionKelsi PenewitElizabeth A. HolmesKathyrn McLeanMingxin RenAdam WaalkesStephen J. SalipanteEleftherios T. PapoutsakisStaphylococcus aureus is an important human pathogen, but studies of the organism have suffered from the lack of a robust tool set for its genetic and genomic manipulation. Here we report the development of a system for the facile and high-throughput genomic engineering of S. aureus using single-stranded DNA (ssDNA) oligonucleotide recombineering coupled with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated counterselection. We identify recombinase EF2132, derived from Enterococcus faecalis, as being capable of integrating single-stranded DNA oligonucleotides into the S. aureus genome. We found that EF2132 can readily mediate recombineering across multiple characterized strains (3 of 3 tested) and primary clinical isolates (6 of 6 tested), typically yielding thousands of recombinants per transformation. Surprisingly, we also found that some S. aureus strains are naturally recombinogenic at measurable frequencies when oligonucleotides are introduced by electroporation, even without exogenous recombinase expression. We construct a temperature-sensitive, two-vector system which enables conditional recombineering and CRISPR/Cas9-mediated counterselection in S. aureus without permanently introducing exogenous genetic material or unintended genetic lesions. We demonstrate the ability of this system to efficiently and precisely engineer point mutations and large single-gene deletions in the S. aureus genome and to yield highly enriched populations of engineered recombinants even in the absence of an externally selectable phenotype. By virtue of utilizing inexpensive, commercially synthesized synthetic DNA oligonucleotides as substrates for recombineering and counterselection, this system provides a scalable, versatile, precise, inexpensive, and generally useful tool for producing isogenic strains in S. aureus which will enable the high-throughput functional assessment of genome variation and gene function across multiple strain backgrounds.http://mbio.asm.org/cgi/content/full/9/1/e00067-18 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kelsi Penewit Elizabeth A. Holmes Kathyrn McLean Mingxin Ren Adam Waalkes Stephen J. Salipante Eleftherios T. Papoutsakis |
spellingShingle |
Kelsi Penewit Elizabeth A. Holmes Kathyrn McLean Mingxin Ren Adam Waalkes Stephen J. Salipante Eleftherios T. Papoutsakis Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection mBio |
author_facet |
Kelsi Penewit Elizabeth A. Holmes Kathyrn McLean Mingxin Ren Adam Waalkes Stephen J. Salipante Eleftherios T. Papoutsakis |
author_sort |
Kelsi Penewit |
title |
Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection |
title_short |
Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection |
title_full |
Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection |
title_fullStr |
Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection |
title_full_unstemmed |
Efficient and Scalable Precision Genome Editing in Staphylococcus aureus through Conditional Recombineering and CRISPR/Cas9-Mediated Counterselection |
title_sort |
efficient and scalable precision genome editing in staphylococcus aureus through conditional recombineering and crispr/cas9-mediated counterselection |
publisher |
American Society for Microbiology |
series |
mBio |
issn |
2150-7511 |
publishDate |
2018-02-01 |
description |
Staphylococcus aureus is an important human pathogen, but studies of the organism have suffered from the lack of a robust tool set for its genetic and genomic manipulation. Here we report the development of a system for the facile and high-throughput genomic engineering of S. aureus using single-stranded DNA (ssDNA) oligonucleotide recombineering coupled with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated counterselection. We identify recombinase EF2132, derived from Enterococcus faecalis, as being capable of integrating single-stranded DNA oligonucleotides into the S. aureus genome. We found that EF2132 can readily mediate recombineering across multiple characterized strains (3 of 3 tested) and primary clinical isolates (6 of 6 tested), typically yielding thousands of recombinants per transformation. Surprisingly, we also found that some S. aureus strains are naturally recombinogenic at measurable frequencies when oligonucleotides are introduced by electroporation, even without exogenous recombinase expression. We construct a temperature-sensitive, two-vector system which enables conditional recombineering and CRISPR/Cas9-mediated counterselection in S. aureus without permanently introducing exogenous genetic material or unintended genetic lesions. We demonstrate the ability of this system to efficiently and precisely engineer point mutations and large single-gene deletions in the S. aureus genome and to yield highly enriched populations of engineered recombinants even in the absence of an externally selectable phenotype. By virtue of utilizing inexpensive, commercially synthesized synthetic DNA oligonucleotides as substrates for recombineering and counterselection, this system provides a scalable, versatile, precise, inexpensive, and generally useful tool for producing isogenic strains in S. aureus which will enable the high-throughput functional assessment of genome variation and gene function across multiple strain backgrounds. |
url |
http://mbio.asm.org/cgi/content/full/9/1/e00067-18 |
work_keys_str_mv |
AT kelsipenewit efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT elizabethaholmes efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT kathyrnmclean efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT mingxinren efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT adamwaalkes efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT stephenjsalipante efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection AT eleftheriostpapoutsakis efficientandscalableprecisiongenomeeditinginstaphylococcusaureusthroughconditionalrecombineeringandcrisprcas9mediatedcounterselection |
_version_ |
1721328547916677120 |