Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera
Accurate and reliable measurements of the 3D flame temperature profile are highly desirable to achieve in-depth understanding of the combustion and pollutant formation processes. In this paper, a measurement method for reconstruction of a 3D flame temperature profile was proposed by using a light fi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2019/6342808 |
id |
doaj-8b4a496155124466a1b91b098a2721c2 |
---|---|
record_format |
Article |
spelling |
doaj-8b4a496155124466a1b91b098a2721c22020-11-25T01:38:05ZengHindawi LimitedInternational Journal of Photoenergy1110-662X1687-529X2019-01-01201910.1155/2019/63428086342808Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field CameraBiao Zhang0Chen Wang1Yudong Liu2Chuanlong Xu3Qi Qi4Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, ChinaKey Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, ChinaKey Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, ChinaKey Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, ChinaKey Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, ChinaAccurate and reliable measurements of the 3D flame temperature profile are highly desirable to achieve in-depth understanding of the combustion and pollutant formation processes. In this paper, a measurement method for reconstruction of a 3D flame temperature profile was proposed by using a light field camera. It combines the convolution imaging model and radiative transfer equation and takes into account the characteristics of emission, absorption, and scattering of a semitransparent flame. According to the point spread function characteristics of the imaging system, the number and positions of the refocus planes were set by comprehensive consideration of the reconstruction accuracy and efficiency. The feasibility of the present method was proved by numerical simulation and an experiment of a candle flame. This method achieves the reconstruction of a 3D asymmetric flame profile through a single exposure of a single camera, which overcomes the problem of complexity of a multicamera system and the time delay of a conventional scanning camera system.http://dx.doi.org/10.1155/2019/6342808 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Biao Zhang Chen Wang Yudong Liu Chuanlong Xu Qi Qi |
spellingShingle |
Biao Zhang Chen Wang Yudong Liu Chuanlong Xu Qi Qi Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera International Journal of Photoenergy |
author_facet |
Biao Zhang Chen Wang Yudong Liu Chuanlong Xu Qi Qi |
author_sort |
Biao Zhang |
title |
Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera |
title_short |
Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera |
title_full |
Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera |
title_fullStr |
Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera |
title_full_unstemmed |
Reconstruction of 3D Temperature Profile of Radiative Participatory Flame Based on Digital Refocusing Technique of Light Field Camera |
title_sort |
reconstruction of 3d temperature profile of radiative participatory flame based on digital refocusing technique of light field camera |
publisher |
Hindawi Limited |
series |
International Journal of Photoenergy |
issn |
1110-662X 1687-529X |
publishDate |
2019-01-01 |
description |
Accurate and reliable measurements of the 3D flame temperature profile are highly desirable to achieve in-depth understanding of the combustion and pollutant formation processes. In this paper, a measurement method for reconstruction of a 3D flame temperature profile was proposed by using a light field camera. It combines the convolution imaging model and radiative transfer equation and takes into account the characteristics of emission, absorption, and scattering of a semitransparent flame. According to the point spread function characteristics of the imaging system, the number and positions of the refocus planes were set by comprehensive consideration of the reconstruction accuracy and efficiency. The feasibility of the present method was proved by numerical simulation and an experiment of a candle flame. This method achieves the reconstruction of a 3D asymmetric flame profile through a single exposure of a single camera, which overcomes the problem of complexity of a multicamera system and the time delay of a conventional scanning camera system. |
url |
http://dx.doi.org/10.1155/2019/6342808 |
work_keys_str_mv |
AT biaozhang reconstructionof3dtemperatureprofileofradiativeparticipatoryflamebasedondigitalrefocusingtechniqueoflightfieldcamera AT chenwang reconstructionof3dtemperatureprofileofradiativeparticipatoryflamebasedondigitalrefocusingtechniqueoflightfieldcamera AT yudongliu reconstructionof3dtemperatureprofileofradiativeparticipatoryflamebasedondigitalrefocusingtechniqueoflightfieldcamera AT chuanlongxu reconstructionof3dtemperatureprofileofradiativeparticipatoryflamebasedondigitalrefocusingtechniqueoflightfieldcamera AT qiqi reconstructionof3dtemperatureprofileofradiativeparticipatoryflamebasedondigitalrefocusingtechniqueoflightfieldcamera |
_version_ |
1725055324627402752 |