An E-Sequence Approach to the 3<i>x</i> + 1 Problem
For any odd positive integer <i>x</i>, define <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stret...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/11/11/1415 |
id |
doaj-8b34712d5f9545bf9c3f432e91cc06b9 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sanmin Wang |
spellingShingle |
Sanmin Wang An E-Sequence Approach to the 3<i>x</i> + 1 Problem Symmetry 3<i>x</i> + 1 problem e-sequence approach ω-divergence of non-periodic e-sequences wendel’s inequality |
author_facet |
Sanmin Wang |
author_sort |
Sanmin Wang |
title |
An E-Sequence Approach to the 3<i>x</i> + 1 Problem |
title_short |
An E-Sequence Approach to the 3<i>x</i> + 1 Problem |
title_full |
An E-Sequence Approach to the 3<i>x</i> + 1 Problem |
title_fullStr |
An E-Sequence Approach to the 3<i>x</i> + 1 Problem |
title_full_unstemmed |
An E-Sequence Approach to the 3<i>x</i> + 1 Problem |
title_sort |
e-sequence approach to the 3<i>x</i> + 1 problem |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2019-11-01 |
description |
For any odd positive integer <i>x</i>, define <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> by setting <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <msub> <mi>a</mi> <mi>n</mi> </msub> </msup> </mfrac> </mrow> </semantics> </math> </inline-formula> such that all <inline-formula> <math display="inline"> <semantics> <msub> <mi>x</mi> <mi>n</mi> </msub> </semantics> </math> </inline-formula> are odd. The <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> problem asserts that there is an <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> for all <i>x</i>. Usually, <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> is called the trajectory of <i>x</i>. In this paper, we concentrate on <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> and call it the E-sequence of <i>x</i>. The idea is that we generalize E-sequences to all infinite sequences <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> of positive integers and consider all these generalized E-sequences. We then define <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> to be <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-convergent to <i>x</i> if it is the E-sequence of <i>x</i> and to be <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergent if it is not the E-sequence of any odd positive integer. We prove a remarkable fact that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergence of all non-periodic E-sequences implies the periodicity of <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>. The principal results of this paper are to prove the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergence of several classes of non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <munder> <mover> <mo movablelimits="true" form="prefix">lim</mo> <mo>¯</mo> </mover> <mrow> <mi>n</mi> <mo>→</mo> <mo>∞</mo> </mrow> </munder> </mstyle> <mfrac> <msub> <mi>b</mi> <mi>n</mi> </msub> <mi>n</mi> </mfrac> <mo>></mo> <msub> <mo form="prefix">log</mo> <mn>2</mn> </msub> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> are <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergent by using Wendel’s inequality and the Matthews and Watts’ formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mn>3</mn> <mi>n</mi> </msup> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> <msup> <mn>2</mn> <msub> <mi>b</mi> <mi>n</mi> </msub> </msup> </mfrac> <mstyle displaystyle="true"> <munderover> <mo>∏</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </munderover> </mstyle> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <msub> <mi>x</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mo>∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> </mstyle> <msub> <mi>a</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. These results present a possible way to prove the periodicity of trajectories of all positive integers in the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> problem, and we call it the E-sequence approach. |
topic |
3<i>x</i> + 1 problem e-sequence approach ω-divergence of non-periodic e-sequences wendel’s inequality |
url |
https://www.mdpi.com/2073-8994/11/11/1415 |
work_keys_str_mv |
AT sanminwang anesequenceapproachtothe3ixi1problem AT sanminwang esequenceapproachtothe3ixi1problem |
_version_ |
1725115603745767424 |
spelling |
doaj-8b34712d5f9545bf9c3f432e91cc06b92020-11-25T01:25:02ZengMDPI AGSymmetry2073-89942019-11-011111141510.3390/sym11111415sym11111415An E-Sequence Approach to the 3<i>x</i> + 1 ProblemSanmin Wang0Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, ChinaFor any odd positive integer <i>x</i>, define <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> by setting <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mo> </mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>3</mn> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>1</mn> </mrow> <msup> <mn>2</mn> <msub> <mi>a</mi> <mi>n</mi> </msub> </msup> </mfrac> </mrow> </semantics> </math> </inline-formula> such that all <inline-formula> <math display="inline"> <semantics> <msub> <mi>x</mi> <mi>n</mi> </msub> </semantics> </math> </inline-formula> are odd. The <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> problem asserts that there is an <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> for all <i>x</i>. Usually, <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> is called the trajectory of <i>x</i>. In this paper, we concentrate on <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> and call it the E-sequence of <i>x</i>. The idea is that we generalize E-sequences to all infinite sequences <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> of positive integers and consider all these generalized E-sequences. We then define <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> to be <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-convergent to <i>x</i> if it is the E-sequence of <i>x</i> and to be <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergent if it is not the E-sequence of any odd positive integer. We prove a remarkable fact that the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergence of all non-periodic E-sequences implies the periodicity of <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>0</mn> </mrow> </msub> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <msub> <mi>x</mi> <mn>0</mn> </msub> </semantics> </math> </inline-formula>. The principal results of this paper are to prove the <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergence of several classes of non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences <inline-formula> <math display="inline"> <semantics> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>⩾</mo> <mn>1</mn> </mrow> </msub> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <munder> <mover> <mo movablelimits="true" form="prefix">lim</mo> <mo>¯</mo> </mover> <mrow> <mi>n</mi> <mo>→</mo> <mo>∞</mo> </mrow> </munder> </mstyle> <mfrac> <msub> <mi>b</mi> <mi>n</mi> </msub> <mi>n</mi> </mfrac> <mo>></mo> <msub> <mo form="prefix">log</mo> <mn>2</mn> </msub> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> are <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>-divergent by using Wendel’s inequality and the Matthews and Watts’ formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mn>3</mn> <mi>n</mi> </msup> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> <msup> <mn>2</mn> <msub> <mi>b</mi> <mi>n</mi> </msub> </msup> </mfrac> <mstyle displaystyle="true"> <munderover> <mo>∏</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> </mrow> </munderover> </mstyle> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <msub> <mi>x</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>=</mo> <mstyle displaystyle="true"> <munderover> <mo>∑</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> </mstyle> <msub> <mi>a</mi> <mi>k</mi> </msub> </mrow> </semantics> </math> </inline-formula>. These results present a possible way to prove the periodicity of trajectories of all positive integers in the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> problem, and we call it the E-sequence approach.https://www.mdpi.com/2073-8994/11/11/14153<i>x</i> + 1 probleme-sequence approachω-divergence of non-periodic e-sequenceswendel’s inequality |