The Protective Effect of Bcl-xl Overexpression against Oxidative Stress-Induced Vascular Endothelial Cell Injury and the Role of the Akt/eNOS Pathway

Restenosis after intraluminal or open vascular reconstruction remains an important clinical problem. Vascular endothelial cell (EC) injury induced by oxidative stress plays an important role in the development of intimal hyperplasia. In this study, we sought to evaluate the protective effects of Bcl...

Full description

Bibliographic Details
Main Authors: Changwei Liu, Shiying Miao, Linfang Wang, Genhuan Yang, Tianjia Li, Xitao Song, Bao Liu, Leng Ni
Format: Article
Language:English
Published: MDPI AG 2013-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/14/11/22149
Description
Summary:Restenosis after intraluminal or open vascular reconstruction remains an important clinical problem. Vascular endothelial cell (EC) injury induced by oxidative stress plays an important role in the development of intimal hyperplasia. In this study, we sought to evaluate the protective effects of Bcl-xl overexpression in vitro on oxidative stress-induced EC injury and the role of the Akt/endothelial nitric oxide synthase (eNOS) pathway. Human umbilical vein endothelial cells (HUVECs) exposed to hydrogen peroxide (H2O2, 0.5 mM) were used as the experimental oxidative stress model. The Bcl-xl gene was transferred into HUVECs through recombinant adenovirus vector pAdxsi-GFP-Bcl-xl before oxidative treatment. Cell apoptosis was evaluated by Annexin V/propidium iodide and Hoechst staining, caspase-7 and PARP cleavage. Cell viability was assessed using the cell counting kit-8 assay, proliferating cell nuclear antigen (PCNA) immunocytochemical detection and the scratching assay. Expressions of Akt, phospho-Akt and eNOS were detected by Western blotting. Our results showed that H2O2 induced apoptosis and decreased the cell viability of HUVECs. Bcl-xl overexpression significantly protected cells from H2O2-induced cell damage and apoptosis and maintained the cell function. Furthermore, the level of phospho-Akt and eNOS protein expression was significantly elevated when pretreated with Bcl-xl gene transferring. These findings suggest that Bcl-xl overexpression exerts an anti-apoptotic and protective effect on EC function. The Akt/eNOS signaling pathway is probably involved in these processes.
ISSN:1422-0067