Preliminary results of tests on nitrogen cushion for combating fire hazard in longwalls rich in methane

Ventilation hazard is the most dangerous phenomena occurring in the hard coal extraction process. This particularly applies to endogenous fire hazard. In order to reduce it, it is necessary to improve the effectiveness of preventive measures. Hence this paper presents new solutions that substantiall...

Full description

Bibliographic Details
Main Authors: Szurgacz Dawid, Sobik Leszek, Brodny Jarosław, Grigashkin Maxim
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/34/e3sconf_iims2020_01066.pdf
Description
Summary:Ventilation hazard is the most dangerous phenomena occurring in the hard coal extraction process. This particularly applies to endogenous fire hazard. In order to reduce it, it is necessary to improve the effectiveness of preventive measures. Hence this paper presents new solutions that substantially improve fire prevention effectiveness. The main idea is to develop and create an additional nitrogen cushion in the zone behind the powered roof support operating in a longwall face. The solution is based on installations for inerting of goafs and sections of the powered roof support. The nitrogen cushion restricts the access of air and oxygen to the area of goafs and limits the possibility of fire. Practical application of the developed solution allowed for effective reduction of fire hazard in conditions of a very high tendency of coal to self-ignite at short incubation period. This, in turn, enables safe exploitation and decommissioning of the longwall. Undoubtedly, the solution presented and the results obtained constitute a new approach to preventive actions in mines. It is the result of the work of theoretical and practical researchers. The solution is a combination of the potential of these two environments. The developed solution should find wide range of applications in the areas where endogenous fire and methane hazards occur.
ISSN:2267-1242