Limits of Gaudin Systems: Classical and Quantum Cases

We consider the XXX homogeneous Gaudin system with N sites, both in classical and the quantum case. In particular we show that a suitable limiting procedure for letting the poles of its Lax matrix collide can be used to define new families of Liouville integrals (in the classical case) and new '...

Full description

Bibliographic Details
Main Authors: Alexander Chervov, Gregorio Falqui, Leonid Rybnikov
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2009-03-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2009.029
Description
Summary:We consider the XXX homogeneous Gaudin system with N sites, both in classical and the quantum case. In particular we show that a suitable limiting procedure for letting the poles of its Lax matrix collide can be used to define new families of Liouville integrals (in the classical case) and new ''Gaudin'' algebras (in the quantum case). We will especially treat the case of total collisions, that gives rise to (a generalization of) the so called Bending flows of Kapovich and Millson. Some aspects of multi-Poisson geometry will be addressed (in the classical case). We will make use of properties of ''Manin matrices'' to provide explicit generators of the Gaudin Algebras in the quantum case.
ISSN:1815-0659