Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
In this work, a study is conducted on the Hermite−Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found fo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/9/1/12 |
id |
doaj-8b0cf3b32a0f4a669f074971f9e39a74 |
---|---|
record_format |
Article |
spelling |
doaj-8b0cf3b32a0f4a669f074971f9e39a742020-11-25T01:47:08ZengMDPI AGAxioms2075-16802020-01-01911210.3390/axioms9010012axioms9010012Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex FunctionsMiguel J. Vivas-Cortez0Artion Kashuri1Rozana Liko2Jorge E. Hernández Hernández3Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, EcuadorDepartment of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, AlbaniaDepartment of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, AlbaniaDepartamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresariales, Universidad Centroccidental Lisandro Alvarado, Av. 20. esq. Av. Moran, Edf. Los Militares, Piso 2, Ofc.2, Barquisimeto 3001, VenezuelaIn this work, a study is conducted on the Hermite−Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found for functions such as the hypergeometric function and the classical Mittag−Leffler function. The method used to obtain the results is classic in the study of quantum integral inequalities.https://www.mdpi.com/2075-1680/9/1/12generalized convexityhermite–hadamard inequalityquantum estimatesspecial functions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miguel J. Vivas-Cortez Artion Kashuri Rozana Liko Jorge E. Hernández Hernández |
spellingShingle |
Miguel J. Vivas-Cortez Artion Kashuri Rozana Liko Jorge E. Hernández Hernández Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions Axioms generalized convexity hermite–hadamard inequality quantum estimates special functions |
author_facet |
Miguel J. Vivas-Cortez Artion Kashuri Rozana Liko Jorge E. Hernández Hernández |
author_sort |
Miguel J. Vivas-Cortez |
title |
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions |
title_short |
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions |
title_full |
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions |
title_fullStr |
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions |
title_full_unstemmed |
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions |
title_sort |
quantum trapezium-type inequalities using generalized <i>ϕ</i>-convex functions |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2020-01-01 |
description |
In this work, a study is conducted on the Hermite−Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found for functions such as the hypergeometric function and the classical Mittag−Leffler function. The method used to obtain the results is classic in the study of quantum integral inequalities. |
topic |
generalized convexity hermite–hadamard inequality quantum estimates special functions |
url |
https://www.mdpi.com/2075-1680/9/1/12 |
work_keys_str_mv |
AT migueljvivascortez quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions AT artionkashuri quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions AT rozanaliko quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions AT jorgeehernandezhernandez quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions |
_version_ |
1725015978957340672 |