Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions

In this work, a study is conducted on the Hermite&#8722;Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found fo...

Full description

Bibliographic Details
Main Authors: Miguel J. Vivas-Cortez, Artion Kashuri, Rozana Liko, Jorge E. Hernández Hernández
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/1/12
id doaj-8b0cf3b32a0f4a669f074971f9e39a74
record_format Article
spelling doaj-8b0cf3b32a0f4a669f074971f9e39a742020-11-25T01:47:08ZengMDPI AGAxioms2075-16802020-01-01911210.3390/axioms9010012axioms9010012Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex FunctionsMiguel J. Vivas-Cortez0Artion Kashuri1Rozana Liko2Jorge E. Hernández Hernández3Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076. Apartado, Quito 17-01-2184, EcuadorDepartment of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, AlbaniaDepartment of Mathematics, Faculty of Technical Science, University Ismail Qemali, L. Pavaresia, Vlora 1001, Vlore, AlbaniaDepartamento de Técnicas Cuantitativas, Decanato de Ciencias Económicas y Empresariales, Universidad Centroccidental Lisandro Alvarado, Av. 20. esq. Av. Moran, Edf. Los Militares, Piso 2, Ofc.2, Barquisimeto 3001, VenezuelaIn this work, a study is conducted on the Hermite&#8722;Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found for functions such as the hypergeometric function and the classical Mittag&#8722;Leffler function. The method used to obtain the results is classic in the study of quantum integral inequalities.https://www.mdpi.com/2075-1680/9/1/12generalized convexityhermite–hadamard inequalityquantum estimatesspecial functions
collection DOAJ
language English
format Article
sources DOAJ
author Miguel J. Vivas-Cortez
Artion Kashuri
Rozana Liko
Jorge E. Hernández Hernández
spellingShingle Miguel J. Vivas-Cortez
Artion Kashuri
Rozana Liko
Jorge E. Hernández Hernández
Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
Axioms
generalized convexity
hermite–hadamard inequality
quantum estimates
special functions
author_facet Miguel J. Vivas-Cortez
Artion Kashuri
Rozana Liko
Jorge E. Hernández Hernández
author_sort Miguel J. Vivas-Cortez
title Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
title_short Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
title_full Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
title_fullStr Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
title_full_unstemmed Quantum Trapezium-Type Inequalities Using Generalized <i>ϕ</i>-Convex Functions
title_sort quantum trapezium-type inequalities using generalized <i>ϕ</i>-convex functions
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2020-01-01
description In this work, a study is conducted on the Hermite&#8722;Hadamard inequality using a class of generalized convex functions that involves a generalized and parametrized class of special functions within the framework of quantum calculation. Similar results can be obtained from the results found for functions such as the hypergeometric function and the classical Mittag&#8722;Leffler function. The method used to obtain the results is classic in the study of quantum integral inequalities.
topic generalized convexity
hermite–hadamard inequality
quantum estimates
special functions
url https://www.mdpi.com/2075-1680/9/1/12
work_keys_str_mv AT migueljvivascortez quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions
AT artionkashuri quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions
AT rozanaliko quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions
AT jorgeehernandezhernandez quantumtrapeziumtypeinequalitiesusinggeneralizediphiconvexfunctions
_version_ 1725015978957340672