Fast screening of Depolymerized Lignin Samples Through 2D‐Liquid Chromatography Mapping

Abstract Lignin valorization and particularly its depolymerization into bio‐aromatics, has emerged as an important research topic within green chemistry. However, screening of catalysts and reaction conditions within this field is strongly constrained by the lack of analytical techniques that allow...

Full description

Bibliographic Details
Main Authors: Tibo De Saegher, Dr. Jeroen Lauwaert, Prof. Joeri Vercammen, Prof. Kevin M. Van Geem, Prof. Jeriffa De Clercq, Prof. An Verberckmoes
Format: Article
Language:English
Published: Wiley-VCH 2021-08-01
Series:ChemistryOpen
Subjects:
Online Access:https://doi.org/10.1002/open.202100088
Description
Summary:Abstract Lignin valorization and particularly its depolymerization into bio‐aromatics, has emerged as an important research topic within green chemistry. However, screening of catalysts and reaction conditions within this field is strongly constrained by the lack of analytical techniques that allow for fast and detailed mapping of the product pools. This analytical gap results from the inherent product pool complexity and the focus of the state‐of‐the‐art on monomers and dimers, overlooking the larger oligomers. In this work, this gap is bridged through the development of a quasi‐orthogonal GPC‐HPLC‐UV/VIS method that is able to separate the bio‐aromatics according to molecular weight (hydrodynamic volume) and polarity. The method is evaluated using model compounds and real lignin depolymerization samples. The resulting color plots provide a powerful graphical tool to rapidly assess differences in reaction selectivity towards monomers and dimers as well as to identify differences in the oligomers.
ISSN:2191-1363