Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI

White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of th...

Full description

Bibliographic Details
Main Authors: Kévin Ginsburger, Fabrice Poupon, Justine Beaujoin, Delphine Estournet, Felix Matuschke, Jean-François Mangin, Markus Axer, Cyril Poupon
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-02-01
Series:Frontiers in Physics
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fphy.2018.00012/full
id doaj-8b017fa9e03d4ca195a9eb0c85fc3be1
record_format Article
spelling doaj-8b017fa9e03d4ca195a9eb0c85fc3be12020-11-25T00:12:50ZengFrontiers Media S.A.Frontiers in Physics2296-424X2018-02-01610.3389/fphy.2018.00012334547Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRIKévin Ginsburger0Kévin Ginsburger1Fabrice Poupon2Fabrice Poupon3Justine Beaujoin4Justine Beaujoin5Delphine Estournet6Delphine Estournet7Felix Matuschke8Jean-François Mangin9Jean-François Mangin10Jean-François Mangin11Markus Axer12Cyril Poupon13Cyril Poupon14CEA DRF/ISVFJ/Neurospin/UNIRS, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Orsay, FranceUniversité Paris-Saclay, Orsay, FranceCEA DRF/ISVFJ/Neurospin/UNATI, Gif-sur-Yvette, FranceCEA DRF/ISVFJ/Neurospin/UNIRS, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Orsay, FranceCEA DRF/ISVFJ/Neurospin/UNIRS, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Orsay, FranceResearch Centre Jülich, Institute of Neuroscience and Medicine, Jülich, GermanyUniversité Paris-Saclay, Orsay, FranceCEA DRF/ISVFJ/Neurospin/UNATI, Gif-sur-Yvette, FranceCATI, Multicenter Neuroimaging Platform, Orsay, FranceResearch Centre Jülich, Institute of Neuroscience and Medicine, Jülich, GermanyCEA DRF/ISVFJ/Neurospin/UNIRS, Gif-sur-Yvette, FranceUniversité Paris-Saclay, Orsay, FranceWhite matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences.This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.http://journal.frontiersin.org/article/10.3389/fphy.2018.00012/fulldiffusion time-dependencewhite matter microstructuretrapezoidal OGSE sequencesaxonal diameterMonte-Carlo simulationsbiomimicking numerical phantoms
collection DOAJ
language English
format Article
sources DOAJ
author Kévin Ginsburger
Kévin Ginsburger
Fabrice Poupon
Fabrice Poupon
Justine Beaujoin
Justine Beaujoin
Delphine Estournet
Delphine Estournet
Felix Matuschke
Jean-François Mangin
Jean-François Mangin
Jean-François Mangin
Markus Axer
Cyril Poupon
Cyril Poupon
spellingShingle Kévin Ginsburger
Kévin Ginsburger
Fabrice Poupon
Fabrice Poupon
Justine Beaujoin
Justine Beaujoin
Delphine Estournet
Delphine Estournet
Felix Matuschke
Jean-François Mangin
Jean-François Mangin
Jean-François Mangin
Markus Axer
Cyril Poupon
Cyril Poupon
Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
Frontiers in Physics
diffusion time-dependence
white matter microstructure
trapezoidal OGSE sequences
axonal diameter
Monte-Carlo simulations
biomimicking numerical phantoms
author_facet Kévin Ginsburger
Kévin Ginsburger
Fabrice Poupon
Fabrice Poupon
Justine Beaujoin
Justine Beaujoin
Delphine Estournet
Delphine Estournet
Felix Matuschke
Jean-François Mangin
Jean-François Mangin
Jean-François Mangin
Markus Axer
Cyril Poupon
Cyril Poupon
author_sort Kévin Ginsburger
title Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
title_short Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
title_full Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
title_fullStr Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
title_full_unstemmed Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI
title_sort improving the realism of white matter numerical phantoms: a step toward a better understanding of the influence of structural disorders in diffusion mri
publisher Frontiers Media S.A.
series Frontiers in Physics
issn 2296-424X
publishDate 2018-02-01
description White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences.This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.
topic diffusion time-dependence
white matter microstructure
trapezoidal OGSE sequences
axonal diameter
Monte-Carlo simulations
biomimicking numerical phantoms
url http://journal.frontiersin.org/article/10.3389/fphy.2018.00012/full
work_keys_str_mv AT kevinginsburger improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT kevinginsburger improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT fabricepoupon improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT fabricepoupon improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT justinebeaujoin improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT justinebeaujoin improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT delphineestournet improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT delphineestournet improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT felixmatuschke improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT jeanfrancoismangin improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT jeanfrancoismangin improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT jeanfrancoismangin improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT markusaxer improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT cyrilpoupon improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
AT cyrilpoupon improvingtherealismofwhitematternumericalphantomsasteptowardabetterunderstandingoftheinfluenceofstructuraldisordersindiffusionmri
_version_ 1725397326102528000