Dynamic Behavior of Floating Tidal Current Power Device Considering Turbine Specifications
Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Korean Society of Ocean Engineers
2018-12-01
|
Series: | 한국해양공학회지 |
Subjects: | |
Online Access: | https://doi.org/10.26748/KSOE.2018.32.6.427 |
Summary: | Tidal current power is one of the energy sources of the ocean. Electricity can be generated by converting the flow energy of the current into the rotational energy of a turbine. Unlike tidal barrage, tidal current power does not require dams, which have a severe environmental impact. A floating-type tidal current power device can reduce the expensive support and installation cost, which usually account for approximately 41% of the total cost. It can also be deployed in relatively deep water using tensioned wires. The dynamic behavior of a floater and turbine force are coupled because the thrust and moment of the turbine affect the floater excursion, and the motion of the floater can affect the incoming speed of the flow into the turbine. To maximize the power generation and stabilize the system, the coupled motion of the floater and turbine must be extensively analyzed. However, unlike pile-fixed devices, there have been few studies involving the motion analysis of a moored-type tidal current power device.
In this study, the commercial program OrcaFlex 10.1a was used for a time domain motion analysis. In addition, in-house code was used for an iterative calculation to solve the coupled problems. As a result, it was found that the maximum mooring load of 200 kN and the floater excursion of 5.5 m were increased by the turbine effect. The load that occurred on the mooring system satisfied the safety factor of 1.67 suggested by API. The optimum mooring system for the floating tidal current power device was suggested to maximize the power generation and stability of the floater. |
---|---|
ISSN: | 1225-0767 2287-6715 |