Chemotactic preferences govern competition and pattern formation in simulated two-strain microbial communities

Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environmen...

Full description

Bibliographic Details
Main Authors: Florian eCentler, Martin eThullner
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-02-01
Series:Frontiers in Microbiology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fmicb.2015.00040/full
Description
Summary:Substrate competition is a common mode of microbial interaction in natural environments. While growth properties play an important and well-studied role in competition, we here focus on the influence of motility. In a simulated two-strain community populating a homogeneous two-dimensional environment, strains competed for a common substrate and only differed in their chemotactic preference, either responding more sensitively to a chemoattractant excreted by themselves or responding more sensitively to substrate. Starting from homogeneous distributions, three possible behaviors were observed depending on the competitors’ chemotactic preferences: i) distributions remained homogeneous, ii) patterns formed but dissolved at a later time point, resulting in a shifted community composition, and iii) patterns emerged and led to the extinction of one strain. When patterns formed, the more aggregating strain populated the core of microbial aggregates where starving conditions prevailed, while the less aggregating strain populated the more productive zones at the fringe or outside aggregates, leading to a competitive advantage of the less aggregating strain. The presence of a competitor was found to modulate a strain’s behavior, either suppressing or promoting aggregate formation. This observation provides a potential mechanism by which an aggregated lifestyle might evolve even if it is initially disadvantageous. Adverse effects can be avoided as a competitor hinders aggregate formation by a strain which has just acquired this ability. The presented results highlight both, the importance of microbial motility for competition and pattern formation, and the importance of the temporal evolution, or history, of microbial communities when trying to explain an observed distribution.
ISSN:1664-302X