A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition
Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, i...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2018-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2018/5608286 |
id |
doaj-8aec06b7c92c472aba463e22e1e0da0a |
---|---|
record_format |
Article |
spelling |
doaj-8aec06b7c92c472aba463e22e1e0da0a2020-11-24T21:26:26ZengHindawi-WileyComplexity1076-27871099-05262018-01-01201810.1155/2018/56082865608286A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized DecompositionRubén Ibáñez0Emmanuelle Abisset-Chavanne1Amine Ammar2David González3Elías Cueto4Antonio Huerta5Jean Louis Duval6Francisco Chinesta7ESI Chair, ENSAM ParisTech. 151, bvd. de l'Hôpital, F-75013 Paris, FranceESI Chair, ENSAM ParisTech. 151, bvd. de l'Hôpital, F-75013 Paris, FranceLAMPA, ENSAM ParisTech. 2, bvd. de Ronceray. F-49035 Angers, FranceAragon Institute of Engineering Research, Universidad de Zaragoza. Maria de Luna, s.n. E-50018 Zaragoza, SpainAragon Institute of Engineering Research, Universidad de Zaragoza. Maria de Luna, s.n. E-50018 Zaragoza, SpainLaboratori de Càlcul Numèric, Universitat Politècnica de Catalunya. Jordi Girona 1-3, E-08034 Barcelona, SpainESI Group. Parc Icade, Immeuble le Seville, 3 bis, Saarinen, CP 50229, 94528, Rungis Cedex, FranceESI Chair, ENSAM ParisTech. 151, bvd. de l'Hôpital, F-75013 Paris, FranceSparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions.http://dx.doi.org/10.1155/2018/5608286 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rubén Ibáñez Emmanuelle Abisset-Chavanne Amine Ammar David González Elías Cueto Antonio Huerta Jean Louis Duval Francisco Chinesta |
spellingShingle |
Rubén Ibáñez Emmanuelle Abisset-Chavanne Amine Ammar David González Elías Cueto Antonio Huerta Jean Louis Duval Francisco Chinesta A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition Complexity |
author_facet |
Rubén Ibáñez Emmanuelle Abisset-Chavanne Amine Ammar David González Elías Cueto Antonio Huerta Jean Louis Duval Francisco Chinesta |
author_sort |
Rubén Ibáñez |
title |
A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition |
title_short |
A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition |
title_full |
A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition |
title_fullStr |
A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition |
title_full_unstemmed |
A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition |
title_sort |
multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition |
publisher |
Hindawi-Wiley |
series |
Complexity |
issn |
1076-2787 1099-0526 |
publishDate |
2018-01-01 |
description |
Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions. |
url |
http://dx.doi.org/10.1155/2018/5608286 |
work_keys_str_mv |
AT rubenibanez amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT emmanuelleabissetchavanne amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT amineammar amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT davidgonzalez amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT eliascueto amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT antoniohuerta amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT jeanlouisduval amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT franciscochinesta amultidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT rubenibanez multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT emmanuelleabissetchavanne multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT amineammar multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT davidgonzalez multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT eliascueto multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT antoniohuerta multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT jeanlouisduval multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition AT franciscochinesta multidimensionaldatadrivensparseidentificationtechniquethesparsepropergeneralizeddecomposition |
_version_ |
1725979837168877568 |