Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems
<p>For various quasisynchronous (QS) CDMA systems such as LAS-CDMA system which emerged recently, in order to reduce or eliminate the multiple access interference and multipath interference, it is required to design a set of spreading sequences which are mutually orthogonal within a designed s...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2004-01-01
|
Series: | EURASIP Journal on Wireless Communications and Networking |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S1687147204405015 |
id |
doaj-8a986b60f91340f2a97fc12030a26f36 |
---|---|
record_format |
Article |
spelling |
doaj-8a986b60f91340f2a97fc12030a26f362020-11-25T00:14:31ZengSpringerOpenEURASIP Journal on Wireless Communications and Networking1687-14721687-14992004-01-01200411931Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA SystemsFan Pingzhi<p>For various quasisynchronous (QS) CDMA systems such as LAS-CDMA system which emerged recently, in order to reduce or eliminate the multiple access interference and multipath interference, it is required to design a set of spreading sequences which are mutually orthogonal within a designed shift zone, called orthogonal zone. For traditional orthogonal sequences, such as Walsh sequences and orthogonal Gold sequences, the orthogonality can only be achieved at the inphase point; in other words, the orthogonality is destroyed whenever there is a relative shift between the sequences, that is, their orthogonal zone is 0. In this paper, new concepts of generalized orthogonality (GO) and generalized quasiorthogonality (GQO) for spreading sequence design in both direct sequence (DS) QS-CDMA systems and time/frequency hopping (TH/FH) QS-CDMA systems are presented. Besides, selected GO/GQO sequence designs and general theoretical periodic and aperiodic limits, together with several applications in QS-CDMA systems, are also reviewed and analyzed.</p> http://dx.doi.org/10.1155/S1687147204405015sequences designgeneralized orthogonalitygeneralized quasiorthogonalitysequence boundsQS-CDMA |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fan Pingzhi |
spellingShingle |
Fan Pingzhi Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems EURASIP Journal on Wireless Communications and Networking sequences design generalized orthogonality generalized quasiorthogonality sequence bounds QS-CDMA |
author_facet |
Fan Pingzhi |
author_sort |
Fan Pingzhi |
title |
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems |
title_short |
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems |
title_full |
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems |
title_fullStr |
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems |
title_full_unstemmed |
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems |
title_sort |
spreading sequence design and theoretical limits for quasisynchronous cdma systems |
publisher |
SpringerOpen |
series |
EURASIP Journal on Wireless Communications and Networking |
issn |
1687-1472 1687-1499 |
publishDate |
2004-01-01 |
description |
<p>For various quasisynchronous (QS) CDMA systems such as LAS-CDMA system which emerged recently, in order to reduce or eliminate the multiple access interference and multipath interference, it is required to design a set of spreading sequences which are mutually orthogonal within a designed shift zone, called orthogonal zone. For traditional orthogonal sequences, such as Walsh sequences and orthogonal Gold sequences, the orthogonality can only be achieved at the inphase point; in other words, the orthogonality is destroyed whenever there is a relative shift between the sequences, that is, their orthogonal zone is 0. In this paper, new concepts of generalized orthogonality (GO) and generalized quasiorthogonality (GQO) for spreading sequence design in both direct sequence (DS) QS-CDMA systems and time/frequency hopping (TH/FH) QS-CDMA systems are presented. Besides, selected GO/GQO sequence designs and general theoretical periodic and aperiodic limits, together with several applications in QS-CDMA systems, are also reviewed and analyzed.</p> |
topic |
sequences design generalized orthogonality generalized quasiorthogonality sequence bounds QS-CDMA |
url |
http://dx.doi.org/10.1155/S1687147204405015 |
work_keys_str_mv |
AT fanpingzhi spreadingsequencedesignandtheoreticallimitsforquasisynchronouscdmasystems |
_version_ |
1725389964574720000 |