The Lefschetz-Hopf theorem and axioms for the Lefschetz number
<p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefsche...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2004-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2004/465090 |
id |
doaj-8a8e777f192e44a7bcd241bd94723f3f |
---|---|
record_format |
Article |
spelling |
doaj-8a8e777f192e44a7bcd241bd94723f3f2020-11-24T21:14:23ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120041465090The Lefschetz-Hopf theorem and axioms for the Lefschetz numberBrown Robert FArkowitz Martin<p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefschetz number, is proved to be the unique integer-valued function <inline-formula><graphic file="1687-1812-2004-465090-i3.gif"/></inline-formula> on self-maps of compact polyhedra which is constant on homotopy classes such that (1) <inline-formula><graphic file="1687-1812-2004-465090-i4.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2004-465090-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2004-465090-i6.gif"/></inline-formula>; (2) if <inline-formula><graphic file="1687-1812-2004-465090-i7.gif"/></inline-formula> is a map of a cofiber sequence into itself, then <inline-formula><graphic file="1687-1812-2004-465090-i8.gif"/></inline-formula>; (3) <inline-formula><graphic file="1687-1812-2004-465090-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2004-465090-i10.gif"/></inline-formula> is a self-map of a wedge of <inline-formula><graphic file="1687-1812-2004-465090-i11.gif"/></inline-formula> circles, <inline-formula><graphic file="1687-1812-2004-465090-i12.gif"/></inline-formula> is the inclusion of a circle into the <inline-formula><graphic file="1687-1812-2004-465090-i13.gif"/></inline-formula>th summand, and <inline-formula><graphic file="1687-1812-2004-465090-i14.gif"/></inline-formula> is the projection onto the <inline-formula><graphic file="1687-1812-2004-465090-i15.gif"/></inline-formula>th summand. If <inline-formula><graphic file="1687-1812-2004-465090-i16.gif"/></inline-formula> is a self-map of a polyhedron and <inline-formula><graphic file="1687-1812-2004-465090-i17.gif"/></inline-formula> is the fixed point index of <inline-formula><graphic file="1687-1812-2004-465090-i18.gif"/></inline-formula> on all of <inline-formula><graphic file="1687-1812-2004-465090-i19.gif"/></inline-formula>, then we show that <inline-formula><graphic file="1687-1812-2004-465090-i20.gif"/></inline-formula> satisfies the above axioms. This gives a new proof of the normalization theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i21.gif"/></inline-formula> is a self-map of a polyhedron, then <inline-formula><graphic file="1687-1812-2004-465090-i22.gif"/></inline-formula> equals the Lefschetz number <inline-formula><graphic file="1687-1812-2004-465090-i23.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2004-465090-i24.gif"/></inline-formula>. This result is equivalent to the Lefschetz-Hopf theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i25.gif"/></inline-formula> is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of <inline-formula><graphic file="1687-1812-2004-465090-i26.gif"/></inline-formula> is the sum of the indices of all the fixed points of <inline-formula><graphic file="1687-1812-2004-465090-i27.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2004/465090 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brown Robert F Arkowitz Martin |
spellingShingle |
Brown Robert F Arkowitz Martin The Lefschetz-Hopf theorem and axioms for the Lefschetz number Fixed Point Theory and Applications |
author_facet |
Brown Robert F Arkowitz Martin |
author_sort |
Brown Robert F |
title |
The Lefschetz-Hopf theorem and axioms for the Lefschetz number |
title_short |
The Lefschetz-Hopf theorem and axioms for the Lefschetz number |
title_full |
The Lefschetz-Hopf theorem and axioms for the Lefschetz number |
title_fullStr |
The Lefschetz-Hopf theorem and axioms for the Lefschetz number |
title_full_unstemmed |
The Lefschetz-Hopf theorem and axioms for the Lefschetz number |
title_sort |
lefschetz-hopf theorem and axioms for the lefschetz number |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2004-01-01 |
description |
<p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefschetz number, is proved to be the unique integer-valued function <inline-formula><graphic file="1687-1812-2004-465090-i3.gif"/></inline-formula> on self-maps of compact polyhedra which is constant on homotopy classes such that (1) <inline-formula><graphic file="1687-1812-2004-465090-i4.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2004-465090-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2004-465090-i6.gif"/></inline-formula>; (2) if <inline-formula><graphic file="1687-1812-2004-465090-i7.gif"/></inline-formula> is a map of a cofiber sequence into itself, then <inline-formula><graphic file="1687-1812-2004-465090-i8.gif"/></inline-formula>; (3) <inline-formula><graphic file="1687-1812-2004-465090-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2004-465090-i10.gif"/></inline-formula> is a self-map of a wedge of <inline-formula><graphic file="1687-1812-2004-465090-i11.gif"/></inline-formula> circles, <inline-formula><graphic file="1687-1812-2004-465090-i12.gif"/></inline-formula> is the inclusion of a circle into the <inline-formula><graphic file="1687-1812-2004-465090-i13.gif"/></inline-formula>th summand, and <inline-formula><graphic file="1687-1812-2004-465090-i14.gif"/></inline-formula> is the projection onto the <inline-formula><graphic file="1687-1812-2004-465090-i15.gif"/></inline-formula>th summand. If <inline-formula><graphic file="1687-1812-2004-465090-i16.gif"/></inline-formula> is a self-map of a polyhedron and <inline-formula><graphic file="1687-1812-2004-465090-i17.gif"/></inline-formula> is the fixed point index of <inline-formula><graphic file="1687-1812-2004-465090-i18.gif"/></inline-formula> on all of <inline-formula><graphic file="1687-1812-2004-465090-i19.gif"/></inline-formula>, then we show that <inline-formula><graphic file="1687-1812-2004-465090-i20.gif"/></inline-formula> satisfies the above axioms. This gives a new proof of the normalization theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i21.gif"/></inline-formula> is a self-map of a polyhedron, then <inline-formula><graphic file="1687-1812-2004-465090-i22.gif"/></inline-formula> equals the Lefschetz number <inline-formula><graphic file="1687-1812-2004-465090-i23.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2004-465090-i24.gif"/></inline-formula>. This result is equivalent to the Lefschetz-Hopf theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i25.gif"/></inline-formula> is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of <inline-formula><graphic file="1687-1812-2004-465090-i26.gif"/></inline-formula> is the sum of the indices of all the fixed points of <inline-formula><graphic file="1687-1812-2004-465090-i27.gif"/></inline-formula>.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2004/465090 |
work_keys_str_mv |
AT brownrobertf thelefschetzhopftheoremandaxiomsforthelefschetznumber AT arkowitzmartin thelefschetzhopftheoremandaxiomsforthelefschetznumber AT brownrobertf lefschetzhopftheoremandaxiomsforthelefschetznumber AT arkowitzmartin lefschetzhopftheoremandaxiomsforthelefschetznumber |
_version_ |
1716747468369035264 |