The Lefschetz-Hopf theorem and axioms for the Lefschetz number

<p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefsche...

Full description

Bibliographic Details
Main Authors: Brown Robert F, Arkowitz Martin
Format: Article
Language:English
Published: SpringerOpen 2004-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2004/465090
id doaj-8a8e777f192e44a7bcd241bd94723f3f
record_format Article
spelling doaj-8a8e777f192e44a7bcd241bd94723f3f2020-11-24T21:14:23ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120041465090The Lefschetz-Hopf theorem and axioms for the Lefschetz numberBrown Robert FArkowitz Martin<p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefschetz number, is proved to be the unique integer-valued function <inline-formula><graphic file="1687-1812-2004-465090-i3.gif"/></inline-formula> on self-maps of compact polyhedra which is constant on homotopy classes such that (1) <inline-formula><graphic file="1687-1812-2004-465090-i4.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2004-465090-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2004-465090-i6.gif"/></inline-formula>; (2) if <inline-formula><graphic file="1687-1812-2004-465090-i7.gif"/></inline-formula> is a map of a cofiber sequence into itself, then <inline-formula><graphic file="1687-1812-2004-465090-i8.gif"/></inline-formula>; (3) <inline-formula><graphic file="1687-1812-2004-465090-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2004-465090-i10.gif"/></inline-formula> is a self-map of a wedge of <inline-formula><graphic file="1687-1812-2004-465090-i11.gif"/></inline-formula> circles, <inline-formula><graphic file="1687-1812-2004-465090-i12.gif"/></inline-formula> is the inclusion of a circle into the <inline-formula><graphic file="1687-1812-2004-465090-i13.gif"/></inline-formula>th summand, and <inline-formula><graphic file="1687-1812-2004-465090-i14.gif"/></inline-formula> is the projection onto the <inline-formula><graphic file="1687-1812-2004-465090-i15.gif"/></inline-formula>th summand. If <inline-formula><graphic file="1687-1812-2004-465090-i16.gif"/></inline-formula> is a self-map of a polyhedron and <inline-formula><graphic file="1687-1812-2004-465090-i17.gif"/></inline-formula> is the fixed point index of <inline-formula><graphic file="1687-1812-2004-465090-i18.gif"/></inline-formula> on all of <inline-formula><graphic file="1687-1812-2004-465090-i19.gif"/></inline-formula>, then we show that <inline-formula><graphic file="1687-1812-2004-465090-i20.gif"/></inline-formula> satisfies the above axioms. This gives a new proof of the normalization theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i21.gif"/></inline-formula> is a self-map of a polyhedron, then <inline-formula><graphic file="1687-1812-2004-465090-i22.gif"/></inline-formula> equals the Lefschetz number <inline-formula><graphic file="1687-1812-2004-465090-i23.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2004-465090-i24.gif"/></inline-formula>. This result is equivalent to the Lefschetz-Hopf theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i25.gif"/></inline-formula> is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of <inline-formula><graphic file="1687-1812-2004-465090-i26.gif"/></inline-formula> is the sum of the indices of all the fixed points of <inline-formula><graphic file="1687-1812-2004-465090-i27.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2004/465090
collection DOAJ
language English
format Article
sources DOAJ
author Brown Robert F
Arkowitz Martin
spellingShingle Brown Robert F
Arkowitz Martin
The Lefschetz-Hopf theorem and axioms for the Lefschetz number
Fixed Point Theory and Applications
author_facet Brown Robert F
Arkowitz Martin
author_sort Brown Robert F
title The Lefschetz-Hopf theorem and axioms for the Lefschetz number
title_short The Lefschetz-Hopf theorem and axioms for the Lefschetz number
title_full The Lefschetz-Hopf theorem and axioms for the Lefschetz number
title_fullStr The Lefschetz-Hopf theorem and axioms for the Lefschetz number
title_full_unstemmed The Lefschetz-Hopf theorem and axioms for the Lefschetz number
title_sort lefschetz-hopf theorem and axioms for the lefschetz number
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2004-01-01
description <p/> <p>The reduced Lefschetz number, that is, <inline-formula><graphic file="1687-1812-2004-465090-i1.gif"/></inline-formula> where <inline-formula><graphic file="1687-1812-2004-465090-i2.gif"/></inline-formula> denotes the Lefschetz number, is proved to be the unique integer-valued function <inline-formula><graphic file="1687-1812-2004-465090-i3.gif"/></inline-formula> on self-maps of compact polyhedra which is constant on homotopy classes such that (1) <inline-formula><graphic file="1687-1812-2004-465090-i4.gif"/></inline-formula> for <inline-formula><graphic file="1687-1812-2004-465090-i5.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2004-465090-i6.gif"/></inline-formula>; (2) if <inline-formula><graphic file="1687-1812-2004-465090-i7.gif"/></inline-formula> is a map of a cofiber sequence into itself, then <inline-formula><graphic file="1687-1812-2004-465090-i8.gif"/></inline-formula>; (3) <inline-formula><graphic file="1687-1812-2004-465090-i9.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2004-465090-i10.gif"/></inline-formula> is a self-map of a wedge of <inline-formula><graphic file="1687-1812-2004-465090-i11.gif"/></inline-formula> circles, <inline-formula><graphic file="1687-1812-2004-465090-i12.gif"/></inline-formula> is the inclusion of a circle into the <inline-formula><graphic file="1687-1812-2004-465090-i13.gif"/></inline-formula>th summand, and <inline-formula><graphic file="1687-1812-2004-465090-i14.gif"/></inline-formula> is the projection onto the <inline-formula><graphic file="1687-1812-2004-465090-i15.gif"/></inline-formula>th summand. If <inline-formula><graphic file="1687-1812-2004-465090-i16.gif"/></inline-formula> is a self-map of a polyhedron and <inline-formula><graphic file="1687-1812-2004-465090-i17.gif"/></inline-formula> is the fixed point index of <inline-formula><graphic file="1687-1812-2004-465090-i18.gif"/></inline-formula> on all of <inline-formula><graphic file="1687-1812-2004-465090-i19.gif"/></inline-formula>, then we show that <inline-formula><graphic file="1687-1812-2004-465090-i20.gif"/></inline-formula> satisfies the above axioms. This gives a new proof of the normalization theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i21.gif"/></inline-formula> is a self-map of a polyhedron, then <inline-formula><graphic file="1687-1812-2004-465090-i22.gif"/></inline-formula> equals the Lefschetz number <inline-formula><graphic file="1687-1812-2004-465090-i23.gif"/></inline-formula> of <inline-formula><graphic file="1687-1812-2004-465090-i24.gif"/></inline-formula>. This result is equivalent to the Lefschetz-Hopf theorem: if <inline-formula><graphic file="1687-1812-2004-465090-i25.gif"/></inline-formula> is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of <inline-formula><graphic file="1687-1812-2004-465090-i26.gif"/></inline-formula> is the sum of the indices of all the fixed points of <inline-formula><graphic file="1687-1812-2004-465090-i27.gif"/></inline-formula>.</p>
url http://www.fixedpointtheoryandapplications.com/content/2004/465090
work_keys_str_mv AT brownrobertf thelefschetzhopftheoremandaxiomsforthelefschetznumber
AT arkowitzmartin thelefschetzhopftheoremandaxiomsforthelefschetznumber
AT brownrobertf lefschetzhopftheoremandaxiomsforthelefschetznumber
AT arkowitzmartin lefschetzhopftheoremandaxiomsforthelefschetznumber
_version_ 1716747468369035264