The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest

Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub>...

Full description

Bibliographic Details
Main Authors: Bram Hadiwijaya, Steeve Pepin, Pierre-Erik Isabelle, Daniel F. Nadeau
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/11/2/237
id doaj-8a7cbc63a2b14ac988ed072d7e9e43a9
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Bram Hadiwijaya
Steeve Pepin
Pierre-Erik Isabelle
Daniel F. Nadeau
spellingShingle Bram Hadiwijaya
Steeve Pepin
Pierre-Erik Isabelle
Daniel F. Nadeau
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
Forests
boreal forest
eddy-covariance
evapotranspiration
sap flow
transpiration
leaf wetness
interception
author_facet Bram Hadiwijaya
Steeve Pepin
Pierre-Erik Isabelle
Daniel F. Nadeau
author_sort Bram Hadiwijaya
title The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
title_short The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
title_full The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
title_fullStr The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
title_full_unstemmed The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
title_sort dynamics of transpiration to evapotranspiration ratio under wet and dry canopy conditions in a humid boreal forest
publisher MDPI AG
series Forests
issn 1999-4907
publishDate 2020-02-01
description Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>), as a component of evapotranspiration (<i>E</i>), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>) under transient canopy wetness states. This study presents field measurements of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> at the Montmorency Forest, Qu&#233;bec, Canada: a balsam fir boreal forest that receives <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8764;</mo> <mn>1600</mn> </mrow> </semantics> </math> </inline-formula> mm of precipitation annually (continental subarctic climate; K&#246;ppen classification subtype Dfc). Half-hourly observations of <i>E</i> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula> were obtained over two growing seasons using eddy-covariance and sap flow (Granier&#8217;s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by <inline-formula> <math display="inline"> <semantics> <mrow> <mn>34</mn> <mo>%</mo> <mo>&#177;</mo> <mn>8</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, compared to Granier&#8217;s original coefficients. The uncertainties associated with the scaling of sap flow measurements to stand <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>, especially circumferential and spatial variations, were also quantified. From 30 wetting&#8722;drying events recorded during the measurement period in summer 2018, variations in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> were analyzed under different stages of canopy wetness. A combination of low evaporative demand and the presence of water on the canopy from the rainfall led to small <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>. During two growing seasons, the average <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>35</mn> <mo>%</mo> <mo>&#177;</mo> <mn>2</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>47</mn> <mo>%</mo> <mo>&#177;</mo> <mn>3</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. The change in total precipitation was not the main driver of seasonal <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> variation, therefore it is important to analyze the impact of rainfall at half-hourly intervals.
topic boreal forest
eddy-covariance
evapotranspiration
sap flow
transpiration
leaf wetness
interception
url https://www.mdpi.com/1999-4907/11/2/237
work_keys_str_mv AT bramhadiwijaya thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT steevepepin thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT pierreerikisabelle thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT danielfnadeau thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT bramhadiwijaya dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT steevepepin dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT pierreerikisabelle dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
AT danielfnadeau dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest
_version_ 1724892220109094912
spelling doaj-8a7cbc63a2b14ac988ed072d7e9e43a92020-11-25T02:16:11ZengMDPI AGForests1999-49072020-02-0111223710.3390/f11020237f11020237The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal ForestBram Hadiwijaya0Steeve Pepin1Pierre-Erik Isabelle2Daniel F. Nadeau3CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaCentre de Recherche et d’Innovation sur les Végétaux, Department of Soil and Agri-Food Engineering, Université Laval, 2480 boulevard Hochelaga, Québec, QC G1V 0A6, CanadaCentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaCentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaHumid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>), as a component of evapotranspiration (<i>E</i>), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>) under transient canopy wetness states. This study presents field measurements of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> at the Montmorency Forest, Qu&#233;bec, Canada: a balsam fir boreal forest that receives <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8764;</mo> <mn>1600</mn> </mrow> </semantics> </math> </inline-formula> mm of precipitation annually (continental subarctic climate; K&#246;ppen classification subtype Dfc). Half-hourly observations of <i>E</i> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula> were obtained over two growing seasons using eddy-covariance and sap flow (Granier&#8217;s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by <inline-formula> <math display="inline"> <semantics> <mrow> <mn>34</mn> <mo>%</mo> <mo>&#177;</mo> <mn>8</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, compared to Granier&#8217;s original coefficients. The uncertainties associated with the scaling of sap flow measurements to stand <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>, especially circumferential and spatial variations, were also quantified. From 30 wetting&#8722;drying events recorded during the measurement period in summer 2018, variations in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> were analyzed under different stages of canopy wetness. A combination of low evaporative demand and the presence of water on the canopy from the rainfall led to small <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>. During two growing seasons, the average <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>35</mn> <mo>%</mo> <mo>&#177;</mo> <mn>2</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>47</mn> <mo>%</mo> <mo>&#177;</mo> <mn>3</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. The change in total precipitation was not the main driver of seasonal <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> variation, therefore it is important to analyze the impact of rainfall at half-hourly intervals.https://www.mdpi.com/1999-4907/11/2/237boreal foresteddy-covarianceevapotranspirationsap flowtranspirationleaf wetnessinterception