The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest
Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | Forests |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4907/11/2/237 |
id |
doaj-8a7cbc63a2b14ac988ed072d7e9e43a9 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bram Hadiwijaya Steeve Pepin Pierre-Erik Isabelle Daniel F. Nadeau |
spellingShingle |
Bram Hadiwijaya Steeve Pepin Pierre-Erik Isabelle Daniel F. Nadeau The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest Forests boreal forest eddy-covariance evapotranspiration sap flow transpiration leaf wetness interception |
author_facet |
Bram Hadiwijaya Steeve Pepin Pierre-Erik Isabelle Daniel F. Nadeau |
author_sort |
Bram Hadiwijaya |
title |
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest |
title_short |
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest |
title_full |
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest |
title_fullStr |
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest |
title_full_unstemmed |
The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal Forest |
title_sort |
dynamics of transpiration to evapotranspiration ratio under wet and dry canopy conditions in a humid boreal forest |
publisher |
MDPI AG |
series |
Forests |
issn |
1999-4907 |
publishDate |
2020-02-01 |
description |
Humid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>), as a component of evapotranspiration (<i>E</i>), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>) under transient canopy wetness states. This study presents field measurements of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives <inline-formula> <math display="inline"> <semantics> <mrow> <mo>∼</mo> <mn>1600</mn> </mrow> </semantics> </math> </inline-formula> mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Half-hourly observations of <i>E</i> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula> were obtained over two growing seasons using eddy-covariance and sap flow (Granier’s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by <inline-formula> <math display="inline"> <semantics> <mrow> <mn>34</mn> <mo>%</mo> <mo>±</mo> <mn>8</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, compared to Granier’s original coefficients. The uncertainties associated with the scaling of sap flow measurements to stand <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>, especially circumferential and spatial variations, were also quantified. From 30 wetting−drying events recorded during the measurement period in summer 2018, variations in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> were analyzed under different stages of canopy wetness. A combination of low evaporative demand and the presence of water on the canopy from the rainfall led to small <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>. During two growing seasons, the average <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>35</mn> <mo>%</mo> <mo>±</mo> <mn>2</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>47</mn> <mo>%</mo> <mo>±</mo> <mn>3</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. The change in total precipitation was not the main driver of seasonal <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> variation, therefore it is important to analyze the impact of rainfall at half-hourly intervals. |
topic |
boreal forest eddy-covariance evapotranspiration sap flow transpiration leaf wetness interception |
url |
https://www.mdpi.com/1999-4907/11/2/237 |
work_keys_str_mv |
AT bramhadiwijaya thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT steevepepin thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT pierreerikisabelle thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT danielfnadeau thedynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT bramhadiwijaya dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT steevepepin dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT pierreerikisabelle dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest AT danielfnadeau dynamicsoftranspirationtoevapotranspirationratiounderwetanddrycanopyconditionsinahumidborealforest |
_version_ |
1724892220109094912 |
spelling |
doaj-8a7cbc63a2b14ac988ed072d7e9e43a92020-11-25T02:16:11ZengMDPI AGForests1999-49072020-02-0111223710.3390/f11020237f11020237The Dynamics of Transpiration to Evapotranspiration Ratio under Wet and Dry Canopy Conditions in a Humid Boreal ForestBram Hadiwijaya0Steeve Pepin1Pierre-Erik Isabelle2Daniel F. Nadeau3CentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaCentre de Recherche et d’Innovation sur les Végétaux, Department of Soil and Agri-Food Engineering, Université Laval, 2480 boulevard Hochelaga, Québec, QC G1V 0A6, CanadaCentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaCentrEau—Water Research Center, Department of Water and Civil Engineering, Université Laval, 1065 avenue de la Médecine, Québec, QC G1V 0A6, CanadaHumid boreal forests are unique environments characterized by a cold climate, abundant precipitation, and high evapotranspiration. Transpiration (<inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>), as a component of evapotranspiration (<i>E</i>), behaves differently under wet and dry canopy conditions, yet very few studies have focused on the dynamics of transpiration to evapotranspiration ratio (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>) under transient canopy wetness states. This study presents field measurements of <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> at the Montmorency Forest, Québec, Canada: a balsam fir boreal forest that receives <inline-formula> <math display="inline"> <semantics> <mrow> <mo>∼</mo> <mn>1600</mn> </mrow> </semantics> </math> </inline-formula> mm of precipitation annually (continental subarctic climate; Köppen classification subtype Dfc). Half-hourly observations of <i>E</i> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula> were obtained over two growing seasons using eddy-covariance and sap flow (Granier’s constant thermal dissipation) methods, respectively, under wet and dry canopy conditions. A series of calibration experiments were performed for sap flow, resulting in species-specific calibration coefficients that increased estimates of sap flux density by <inline-formula> <math display="inline"> <semantics> <mrow> <mn>34</mn> <mo>%</mo> <mo>±</mo> <mn>8</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, compared to Granier’s original coefficients. The uncertainties associated with the scaling of sap flow measurements to stand <inline-formula> <math display="inline"> <semantics> <msub> <mi>E</mi> <mi>T</mi> </msub> </semantics> </math> </inline-formula>, especially circumferential and spatial variations, were also quantified. From 30 wetting−drying events recorded during the measurement period in summer 2018, variations in <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> were analyzed under different stages of canopy wetness. A combination of low evaporative demand and the presence of water on the canopy from the rainfall led to small <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula>. During two growing seasons, the average <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> ranged from <inline-formula> <math display="inline"> <semantics> <mrow> <mn>35</mn> <mo>%</mo> <mo>±</mo> <mn>2</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> to <inline-formula> <math display="inline"> <semantics> <mrow> <mn>47</mn> <mo>%</mo> <mo>±</mo> <mn>3</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>. The change in total precipitation was not the main driver of seasonal <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>E</mi> <mi>T</mi> </msub> <mo>/</mo> <mi>E</mi> </mrow> </semantics> </math> </inline-formula> variation, therefore it is important to analyze the impact of rainfall at half-hourly intervals.https://www.mdpi.com/1999-4907/11/2/237boreal foresteddy-covarianceevapotranspirationsap flowtranspirationleaf wetnessinterception |