On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II

In this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalen...

Full description

Bibliographic Details
Main Author: Александр Анатольевич Кадубовский
Format: Article
Language:Russian
Published: Odessa National Academy of Food Technologies 2015-09-01
Series:Pracì Mìžnarodnogo Geometričnogo Centru
Subjects:
Online Access:http://journals.uran.ua/geometry/article/view/50155
id doaj-8a74299b7c9f4b37a0dd10b3b1b95ccf
record_format Article
spelling doaj-8a74299b7c9f4b37a0dd10b3b1b95ccf2020-11-24T20:56:00ZrusOdessa National Academy of Food TechnologiesPracì Mìžnarodnogo Geometričnogo Centru 2072-98122015-09-018110.15673/2072-9812.1/2015.5015547270On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, IIАлександр Анатольевич Кадубовский0Донбасский государственный педагогический университетIn this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalent such functions.http://journals.uran.ua/geometry/article/view/50155гладкая функциякритична точка типа седлоповерхностьтопологическая классификация2-цветная хордовая диаграммаразбиения без самопересеченийчисла Нараяна
collection DOAJ
language Russian
format Article
sources DOAJ
author Александр Анатольевич Кадубовский
spellingShingle Александр Анатольевич Кадубовский
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
Pracì Mìžnarodnogo Geometričnogo Centru
гладкая функция
критична точка типа седло
поверхность
топологическая классификация
2-цветная хордовая диаграмма
разбиения без самопересечений
числа Нараяна
author_facet Александр Анатольевич Кадубовский
author_sort Александр Анатольевич Кадубовский
title On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
title_short On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
title_full On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
title_fullStr On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
title_full_unstemmed On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
title_sort on the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, ii
publisher Odessa National Academy of Food Technologies
series Pracì Mìžnarodnogo Geometričnogo Centru
issn 2072-9812
publishDate 2015-09-01
description In this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalent such functions.
topic гладкая функция
критична точка типа седло
поверхность
топологическая классификация
2-цветная хордовая диаграмма
разбиения без самопересечений
числа Нараяна
url http://journals.uran.ua/geometry/article/view/50155
work_keys_str_mv AT aleksandranatolʹevičkadubovskij onthenumberoftopologicallynonequivalentfunctionswithonedegeneratesaddlecriticalpointontwodimensionalsphereii
_version_ 1716791165047537664