On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II
In this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalen...
Main Author: | |
---|---|
Format: | Article |
Language: | Russian |
Published: |
Odessa National Academy of Food Technologies
2015-09-01
|
Series: | Pracì Mìžnarodnogo Geometričnogo Centru |
Subjects: | |
Online Access: | http://journals.uran.ua/geometry/article/view/50155 |
id |
doaj-8a74299b7c9f4b37a0dd10b3b1b95ccf |
---|---|
record_format |
Article |
spelling |
doaj-8a74299b7c9f4b37a0dd10b3b1b95ccf2020-11-24T20:56:00ZrusOdessa National Academy of Food TechnologiesPracì Mìžnarodnogo Geometričnogo Centru 2072-98122015-09-018110.15673/2072-9812.1/2015.5015547270On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, IIАлександр Анатольевич Кадубовский0Донбасский государственный педагогический университетIn this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalent such functions.http://journals.uran.ua/geometry/article/view/50155гладкая функциякритична точка типа седлоповерхностьтопологическая классификация2-цветная хордовая диаграммаразбиения без самопересеченийчисла Нараяна |
collection |
DOAJ |
language |
Russian |
format |
Article |
sources |
DOAJ |
author |
Александр Анатольевич Кадубовский |
spellingShingle |
Александр Анатольевич Кадубовский On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II Pracì Mìžnarodnogo Geometričnogo Centru гладкая функция критична точка типа седло поверхность топологическая классификация 2-цветная хордовая диаграмма разбиения без самопересечений числа Нараяна |
author_facet |
Александр Анатольевич Кадубовский |
author_sort |
Александр Анатольевич Кадубовский |
title |
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II |
title_short |
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II |
title_full |
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II |
title_fullStr |
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II |
title_full_unstemmed |
On the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, II |
title_sort |
on the number of topologically non-equivalent functions with one degenerate saddle critical point on two-dimensional sphere, ii |
publisher |
Odessa National Academy of Food Technologies |
series |
Pracì Mìžnarodnogo Geometričnogo Centru |
issn |
2072-9812 |
publishDate |
2015-09-01 |
description |
In this paper we consider the smooth functions with three critical values on two-dimensional sphere $S^2$, that possess only one (degenerate) saddle critical point in addition to $M$ local maxima and $m$ local minima. For any natural $M$ and $m$ we calculate the number of topologically non-equivalent such functions. |
topic |
гладкая функция критична точка типа седло поверхность топологическая классификация 2-цветная хордовая диаграмма разбиения без самопересечений числа Нараяна |
url |
http://journals.uran.ua/geometry/article/view/50155 |
work_keys_str_mv |
AT aleksandranatolʹevičkadubovskij onthenumberoftopologicallynonequivalentfunctionswithonedegeneratesaddlecriticalpointontwodimensionalsphereii |
_version_ |
1716791165047537664 |