Numerical study of aerodynamics and brown coal combustion in the vortex furnace with air excess variation

The results of numerical modelling of 3D turbulent two-phase reacting flow with account for all the principal heat and mass transfer processes during the pulverized brown coal combustion in the vortex furnace of a power plant boiler unit have been presented. For two computational cases where air exc...

Full description

Bibliographic Details
Main Author: Krasinsky Denis
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201711506011
Description
Summary:The results of numerical modelling of 3D turbulent two-phase reacting flow with account for all the principal heat and mass transfer processes during the pulverized brown coal combustion in the vortex furnace of a power plant boiler unit have been presented. For two computational cases where air excess coefficient α was varied (set to 1.15 and 1.25), the detailed aerothermochemical 3D structure of reacting flow in the furnace volume has been revealed. The comparison of integral heat engineering parameters and NOx emissions obtained in the two cases has shown a slightly improved vortex furnace performance in the case α=1.25.
ISSN:2261-236X