Tobramycin-Linked Efflux Pump Inhibitor Conjugates Synergize Fluoroquinolones, Rifampicin and Fosfomycin against Multidrug-Resistant Pseudomonas aeruginosa

In this study, we examined the in vitro effect of tobramycin-efflux pump inhibitor (TOB-EPI) conjugates in combinations with fluoroquinolones, rifampicin and fosfomycin on the growth of multi-drug resistant (MDR) and extremely-drug resistant (XDR) Pseudomonas aeruginosa. The TOB-EPI conjugates inclu...

Full description

Bibliographic Details
Main Authors: Xuan Yang, Ronald Domalaon, Yinfeng Lyu, George G. Zhanel, Frank Schweizer
Format: Article
Language:English
Published: MDPI AG 2018-06-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:http://www.mdpi.com/2077-0383/7/7/158
Description
Summary:In this study, we examined the in vitro effect of tobramycin-efflux pump inhibitor (TOB-EPI) conjugates in combinations with fluoroquinolones, rifampicin and fosfomycin on the growth of multi-drug resistant (MDR) and extremely-drug resistant (XDR) Pseudomonas aeruginosa. The TOB-EPI conjugates include tobramycin covalently linked to 1-(1-naphthylmethyl)-piperazine (NMP) (1), paroxetine (PAR) (2) and a dibasic peptide analogue of MC-04,124 (DBP) (3). Potent synergism was found for combinations of TOB-NMP (1), TOB-PAR (2) or TOB-DBP (3) with either fluoroquinolones (moxifloxacin, ciprofloxacin), rifampicin or fosfomycin against a panel of multidrug-resistant/extensively drug-resistant (MDR/XDR) P. aeruginosa clinical isolates. In the presence of ≤8 mg/L (6.1–7.2 µM) (≤¼ × MICadjuvant) concentration of the three conjugates, the MIC80 of moxifloxacin, ciprofloxacin, rifampicin and fosfomycin were dramatically reduced. Furthermore, the MIC80 of rifampicin (0.25–0.5 mg/L) and fosfomycin (8–16 mg/L) were reduced below their interpretative susceptibility breakpoints. Our data confirm the ability of TOB-NMP (1), TOB-PAR (2) and TOB-DBP (3) conjugates to strongly synergize with moxifloxacin, ciprofloxacin, rifampicin and fosfomycin against MDR/XDR P. aeruginosa. These synergistic combinations warrant further studies as there is an urgent need to develop new strategies to treat drug-resistant P. aeruginosa infections.
ISSN:2077-0383