Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote s...

Full description

Bibliographic Details
Main Authors: M. Taylor, S. Kazadzis, A. Tsekeri, A. Gkikas, V. Amiridis
Format: Article
Language:English
Published: Copernicus Publications 2014-09-01
Series:Atmospheric Measurement Techniques
Online Access:http://www.atmos-meas-tech.net/7/3151/2014/amt-7-3151-2014.pdf
id doaj-8a42c0b236ac465d98bd7b897136fec4
record_format Article
spelling doaj-8a42c0b236ac465d98bd7b897136fec42020-11-24T23:54:13ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482014-09-01793151317510.5194/amt-7-3151-2014Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peakM. Taylor0S. Kazadzis1A. Tsekeri2A. Gkikas3V. Amiridis4Institute for Environmental Research and Sustainable Development (IERSD), National Observatory of Athens (NOA), Metaxa & Vas. Pavlou, Penteli, 15236, Athens, GreeceInstitute for Environmental Research and Sustainable Development (IERSD), National Observatory of Athens (NOA), Metaxa & Vas. Pavlou, Penteli, 15236, Athens, GreeceInstitute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens (NOA), Metaxa & Vas. Pavlou, Penteli, 15236, Athens, GreeceLaboratory of Meteorology, Physics Department, University of Ioannina, GreeceInstitute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens (NOA), Metaxa & Vas. Pavlou, Penteli, 15236, Athens, GreeceIn order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo – with moderate precision: correlation coefficients in the range 0.368 ≤ <i>R</i> ≤ 0.514. The network failed to recover the spectral behaviour of the real part of the complex refractive index. This new methodological approach appears to offer some potential for moderately accurate daily retrieval of the total volume concentration of the coarse mode of aerosol at the Saharan dust peak in the area of Northern Africa.http://www.atmos-meas-tech.net/7/3151/2014/amt-7-3151-2014.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Taylor
S. Kazadzis
A. Tsekeri
A. Gkikas
V. Amiridis
spellingShingle M. Taylor
S. Kazadzis
A. Tsekeri
A. Gkikas
V. Amiridis
Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
Atmospheric Measurement Techniques
author_facet M. Taylor
S. Kazadzis
A. Tsekeri
A. Gkikas
V. Amiridis
author_sort M. Taylor
title Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
title_short Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
title_full Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
title_fullStr Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
title_full_unstemmed Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak
title_sort satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the sahara desert dust peak
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2014-09-01
description In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo – with moderate precision: correlation coefficients in the range 0.368 ≤ <i>R</i> ≤ 0.514. The network failed to recover the spectral behaviour of the real part of the complex refractive index. This new methodological approach appears to offer some potential for moderately accurate daily retrieval of the total volume concentration of the coarse mode of aerosol at the Saharan dust peak in the area of Northern Africa.
url http://www.atmos-meas-tech.net/7/3151/2014/amt-7-3151-2014.pdf
work_keys_str_mv AT mtaylor satelliteretrievalofaerosolmicrophysicalandopticalparametersusingneuralnetworksanewmethodologyappliedtothesaharadesertdustpeak
AT skazadzis satelliteretrievalofaerosolmicrophysicalandopticalparametersusingneuralnetworksanewmethodologyappliedtothesaharadesertdustpeak
AT atsekeri satelliteretrievalofaerosolmicrophysicalandopticalparametersusingneuralnetworksanewmethodologyappliedtothesaharadesertdustpeak
AT agkikas satelliteretrievalofaerosolmicrophysicalandopticalparametersusingneuralnetworksanewmethodologyappliedtothesaharadesertdustpeak
AT vamiridis satelliteretrievalofaerosolmicrophysicalandopticalparametersusingneuralnetworksanewmethodologyappliedtothesaharadesertdustpeak
_version_ 1725466665237348352