Homeostasis as a proportional–integral control system
Abstract According to medical guidelines, the distinction between “healthy” and “unhealthy” patients is commonly based on single, discrete values taken at an isolated point in time (e.g., blood pressure or core temperature). Perhaps a more robust and insightful diagnosis can be obtained by studying...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-05-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-020-0283-x |
id |
doaj-8a4013b3f53846889678bb7e52be1f13 |
---|---|
record_format |
Article |
spelling |
doaj-8a4013b3f53846889678bb7e52be1f132021-05-23T11:40:58ZengNature Publishing Groupnpj Digital Medicine2398-63522020-05-01311710.1038/s41746-020-0283-xHomeostasis as a proportional–integral control systemLennaert van Veen0Jacob Morra1Adam Palanica2Yan Fossat3Faculty of Science, Ontario Tech UniversityLabs Department, Klick Health, Klick IncLabs Department, Klick Health, Klick IncLabs Department, Klick Health, Klick IncAbstract According to medical guidelines, the distinction between “healthy” and “unhealthy” patients is commonly based on single, discrete values taken at an isolated point in time (e.g., blood pressure or core temperature). Perhaps a more robust and insightful diagnosis can be obtained by studying the functional interdependence of such indicators and the homeostasis that controls them. This requires quasi-continuous measurements and a procedure to map the data onto a parsimonious control model with a degree of universality. The current research illustrates this approach using glucose homeostasis as a target. Data were obtained from 41 healthy subjects wearing over-the-counter glucose monitors, and projected onto a simple proportional–integral (PI) controller, widely used in engineering applications. The indicators quantifying the control function are clustered for the great majority of subjects, while a few outliers exhibit less responsive homeostasis. Practical implications for healthcare and education are further discussed.https://doi.org/10.1038/s41746-020-0283-x |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lennaert van Veen Jacob Morra Adam Palanica Yan Fossat |
spellingShingle |
Lennaert van Veen Jacob Morra Adam Palanica Yan Fossat Homeostasis as a proportional–integral control system npj Digital Medicine |
author_facet |
Lennaert van Veen Jacob Morra Adam Palanica Yan Fossat |
author_sort |
Lennaert van Veen |
title |
Homeostasis as a proportional–integral control system |
title_short |
Homeostasis as a proportional–integral control system |
title_full |
Homeostasis as a proportional–integral control system |
title_fullStr |
Homeostasis as a proportional–integral control system |
title_full_unstemmed |
Homeostasis as a proportional–integral control system |
title_sort |
homeostasis as a proportional–integral control system |
publisher |
Nature Publishing Group |
series |
npj Digital Medicine |
issn |
2398-6352 |
publishDate |
2020-05-01 |
description |
Abstract According to medical guidelines, the distinction between “healthy” and “unhealthy” patients is commonly based on single, discrete values taken at an isolated point in time (e.g., blood pressure or core temperature). Perhaps a more robust and insightful diagnosis can be obtained by studying the functional interdependence of such indicators and the homeostasis that controls them. This requires quasi-continuous measurements and a procedure to map the data onto a parsimonious control model with a degree of universality. The current research illustrates this approach using glucose homeostasis as a target. Data were obtained from 41 healthy subjects wearing over-the-counter glucose monitors, and projected onto a simple proportional–integral (PI) controller, widely used in engineering applications. The indicators quantifying the control function are clustered for the great majority of subjects, while a few outliers exhibit less responsive homeostasis. Practical implications for healthcare and education are further discussed. |
url |
https://doi.org/10.1038/s41746-020-0283-x |
work_keys_str_mv |
AT lennaertvanveen homeostasisasaproportionalintegralcontrolsystem AT jacobmorra homeostasisasaproportionalintegralcontrolsystem AT adampalanica homeostasisasaproportionalintegralcontrolsystem AT yanfossat homeostasisasaproportionalintegralcontrolsystem |
_version_ |
1721429478962364416 |