Raindrop Size Distribution Retrieval Using Joint Dual-Frequency and Dual-Polarization Microwave Links

Estimation of raindrop size distribution (DSD) is essential in many meteorological and hydrologic fields. This paper proposes a method for retrieving path-averaged DSD parameters using joint dual-frequency and dual-polarization microwave links of the telecommunication system. Detailed analyses of th...

Full description

Bibliographic Details
Main Authors: Kun Song, Xichuan Liu, Taichang Gao, Binsheng He
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2019/7251870
Description
Summary:Estimation of raindrop size distribution (DSD) is essential in many meteorological and hydrologic fields. This paper proposes a method for retrieving path-averaged DSD parameters using joint dual-frequency and dual-polarization microwave links of the telecommunication system. Detailed analyses of the rain-induced attenuation calculation are performed based on the T-matrix method. A forward model is established for describing the relation between the DSD and the rain-induced attenuation. Then, the method is proposed to retrieve propagation path DSD parameters based on Levenberg–Marquardt optimization algorithm. The numerical simulation for path-averaged DSD retrieval shows that the RMSEs of three gamma DSD parameters are 0.34 mm−1, 0.81, and 3.21×103 m−3·mm−1, respectively, in rainfall intensity above 30 mm/h. Meanwhile, the method can retrieve the rainfall intensity without the influence of variational DSD. Theoretical analyses and numerical simulations confirm that the method for retrieving path-averaged DSD parameters is promising. The method can complement existing DSD monitoring systems such as the disdrometer and provide high-resolution rainfall measurements with widely distributed microwave links without additional cost.
ISSN:1687-9309
1687-9317