Summary: | This paper proposes an energy management system (EMS) architecture based on the Kubernetes container cluster to solve the problem of traditional EMSs being unable to simultaneously achieve high reliability and high resource utilization. Container cluster technology is used to encapsulate, isolate and deploy applications, which solves the problem of low system reliability caused by interlocking failures. Discrete Markov theory is applied to propose a dynamic Pod fault-tolerant EMS model. The results of the solution model are used to adjust the Pod redundancy in real-time to achieve the highest reliability to satisfy physical resource constraints. The results of the performance analysis show that the reliability of the proposed architecture is 99.9999504%. Compared with the EMS of the service-oriented architecture (SOA), the annual failure time is reduced from 3.83 minutes to 0.26 minutes. The comprehensive utilization of hardware resources increases by approximately 20%, and performance indicators such as the peak access success rate improve significantly. The proposed architecture is implemented in a real-power system, with good operating results and broad application prospects.
|