Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating

Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the p...

Full description

Bibliographic Details
Main Authors: Fengkui Cui, Yongxiang Su
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/4346015
id doaj-89f2eb0b6d30435fa3ea7878b7142fb6
record_format Article
spelling doaj-89f2eb0b6d30435fa3ea7878b7142fb62020-11-25T01:58:31ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472018-01-01201810.1155/2018/43460154346015Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-BeatingFengkui Cui0Yongxiang Su1School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, ChinaSchool of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, ChinaSurface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.http://dx.doi.org/10.1155/2018/4346015
collection DOAJ
language English
format Article
sources DOAJ
author Fengkui Cui
Yongxiang Su
spellingShingle Fengkui Cui
Yongxiang Su
Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
Mathematical Problems in Engineering
author_facet Fengkui Cui
Yongxiang Su
author_sort Fengkui Cui
title Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
title_short Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
title_full Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
title_fullStr Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
title_full_unstemmed Gray Relational Optimization of the Surface Performance of Splines Formed by Cold Roll-Beating
title_sort gray relational optimization of the surface performance of splines formed by cold roll-beating
publisher Hindawi Limited
series Mathematical Problems in Engineering
issn 1024-123X
1563-5147
publishDate 2018-01-01
description Surface roughness, residual stress, and work hardening are the key parameters characterizing the mechanical properties of a spline surface after undergoing cold roll-beating. A comprehensive optimization of the mechanical properties of such surfaces has not been previously reported. To improve the performance of the spline surface, gray theory is used to study the relationships between the surface roughness, residual stress, and work hardening in the pitch diameter of spline teeth. This method addresses the surface performance optimization of an involute spline as influenced by the cold roll-beating speed and feed rate as the main parameters during the cold roll-beating process. The results show that the surface roughness and hardening degree of the splines increase with an increasing feed rate but decrease with an increasing cold roll-beating speed; the residual stress of the spline decreases with an increasing feed rate and increases with an increasing cold roll-beating speed. The results also show that the feed rate has a strong influence on the surface performance of splines produced by cold roll-beating. The optimal process parameters in terms of the spline surface performance are a cold roll-beating speed of 1428 r/min and a feed rate of 42 mm/min. The results of the present work emphasize the significance of improving the surface performance of the cold roll-beating spline-forming process and determining the optimal process parameters.
url http://dx.doi.org/10.1155/2018/4346015
work_keys_str_mv AT fengkuicui grayrelationaloptimizationofthesurfaceperformanceofsplinesformedbycoldrollbeating
AT yongxiangsu grayrelationaloptimizationofthesurfaceperformanceofsplinesformedbycoldrollbeating
_version_ 1724969227920605184